

DUDLEY K/..

NAVAL PO '

;>CHOOl
MONTERE-i ^ ,,6101

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS
Real-time Scheduling and Synchronization

for the
NPS Autonomous Underwater Vehicle

by

DionysiosMakris

December, 1991

Thesis Advisor:
Second Reader

ShridharB.Shukla
Roberto Cristi

Approved for public release; distribution is unlimited

nclassified

curity Classification of this page

i. Report Security Classification

UNCLASSIFIED
a. Security Classification Authority

b. Declassification/Downgrading Schedule

REPORT DOCUMENTATION PAGE
lb. Restrictive Markings

Performing Organization Report Number(s)

a. Name of Performing Organization

Naval Postgraduate School

:. Address (City, State, and ZIP Code)

Monterey, CA 93943-5000

i. Name of Funding/Sponsoring
Organization

Address (City, State, and ZIP Code)

6b. Office Symbol
(if applicable)

Code 33

3. Distribution Availability of Report

Approved for public release;

distribution is unlimited.
5. Monitoring Organization Report Number(s)

8b. Office Symbol
(if applicable)

7a. Name of Monitoring Organization

Naval Postgraduate School

7b. Address (City, State, and ZIP Code)

Monterey, CA 93943-5000

9. Procurement Instrument Identification Numbe

10. Source of Funding Numbers
Program
Element Number

Project No. Task No.

. Title (Include Security Classification) ^ „ . T _
T

. ,„ _, ^, TT
' _ , ' 1

REAL-TIME SCHEDULING AND SYCHRONIZATION
^OR THE NPS AUTONOMOUS UNDERWATER VEHICLE

Work Unit
Accession No.

. Personal Author(s)

a. Type of Report

Master's Thesis
. Supplementary Notaticn"

MAKRIS, Dionysios
13b. Time Covered
From To

14. Date of Report (Year, Month, Day)

December 1991

15. Page Count

97
The views expressed in this thesis are those of the author and do not reflect the

facial policy or position of the Department of Defense or the United States Government
Cosati Codes

Field Group Subgroup

IS. Subject lerms (Continue on reverse if necessary and identify by block number)

Aperiodic, Data-flow, Periodic, Rate Monotonic, Real-time, Schedul-
ing, Synchronization, Task.

Abstract (Continue on reverse if necessary and identify by block number) '

The work described in this thesis is part of a multi-year research project to develop an Autonomous.derwater Veh.de (AUV-II), which is an intelligent robot submarine, carried out by the departmenTso

ie School
S

'

C°mpUter SdenCe and Electrical <""! Computer Engineering of the Naval Postgrad-

The AUV-II on-board computer must perform several different tasks such as navigation, autopilot gnid-

n;xr™;
n

t

s
h /°"t

nr^ce
' ^ under strict timins constraints *^*« «*X

lw.fi; I , ! l

'beS the d6S,gn and devel°Pment of real-time scheduling software which ispable of schedulmg and synchronizing the periodic and aperiodic processes required by the AUV II A

^sTZrrSr
°f a GlaPhiCal "^ InterfaCe^ h™^^ *— *»-^» deling

Distribution/Availabihty of Abstract

J unclassified/unlimited sarneas report
.. Name of Responsible Individual "

Shridhar B. Shukla
FORM 1473, 84 MAR

D DTIC users

21. Abstract Security Classification

UNCLASSIFIED
22b. Telephone (Include Area Code)

(408) 646-2764
83 APR edjtion may be used until exhausted

All other editions are obsolete

22c. Office Symbol

E'C/Sh

security classification of this page

Unclassified

Approved for public release; distribution is unlimited

Real-time Scheduling and Synchronization

for the

NPS Autonomous Underwater Vehicle

by

Dionysios Makris

Lieutenant JG, Hellenic Navy

B.S, Hellenic Naval Academy, 1983

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

ABSTRACT

The work described in this thesis is part of a multi-year research project to

develop an Autonomous Underwater Vehicle (AUV-II), which is an intelligent robot

submarine, carried out by the departments of Mechanical Engineering, Computer

Science, and Electrical and Computer Engineering of the Naval Postgraduate School.

The AUV-II on-board computer must perform several different tasks such as

navigation, autopilot, guidance, sonar processing, and collision avoidance, etc. under

strict timing constraints to guarantee the safety of the vehicle. This thesis describes

the design and development of real-time scheduling software, which is capable of

scheduling and synchronizing the periodic and aperiodic processes required by the

AUV-II. A design recommendation of a Graphical User Interface has been developed

to improve the software engineering aspects of this project.

in

a./

TABLE OF CONTENTS

I. INTRODUCTION 1

A. BACKGROUND 1

1. NTS AUV-II 1

2. Data-flow for On-board Processing 1

3. AUV-II Real-time Programming Environment 4

B. OBJECTIVES OF THE STUDY 5

C. THESIS ORGANIZATION 5

II. ISSUES IN REAL-TIME SYSTEMS 6

A. REAL-TIME SCHEDULING 6

1. Static Scheduling 7

2. Dynamic Scheduling 7

3. Rate Monotonic Scheduling 8

4. Data-flow Scheduling 9

5. Schedulability Analysis 10

B. REAL-TIME SYNCHRONIZATION 11

C. TECHNIQUES OF REAL-TIME SYNCHRONIZATION 13

1. Two Phase Locking Protocol 13

2. Priority Inheritance and Priority Ceiling Protocol 14

3. Data-flow Synchronization 15

D. EFFECT OF SYNCHRONIZATION ON SCHEDULABILITY . . 15

III. SCHEDULING AND SYNCHRONIZATION FOR AUV-II 18

A. OS-9 SUPPORT FOR SCHEDULING AND SYNCHRONIZATION 18

B. IMPLEMENTATION OF DATA-FLOW SYNCHRONIZATION . 19

iv

DUDLEY KNOX LIBRARY

8SBrSKffi«»
C USER INTEMME .

* """""
29

D. PERFORMANCE OF PIPE-BASED SYNCHRONIZATION ... 32

E. EXPERIMENTAL RESULTS

IV. FRAMEWORK FOR A GRAPHICAL USER INTERFACE 38

A. GRAPHICAL USER INTERFACE REQUIREMENTS 38

1. Current Operation .

38
2. Requirements . .

39
B. X-WINDOW SYSTEM

40
C. GUI IMPLEMENTATION

42
1. Main Window .

43
2. Pop-up Windows .

45
D. PROBLEMS IN THE GUI IMPLEMENTATION

47
V. CONCLUSIONS AND FUTURE DIRECTIONS

51
A. CONCLUSIONS

51
B. FUTURE WORK

52
REFERENCES

54
APPENDIX A: MAIN FOR RUN-TIME SCHEDULER

56
APPENDIX B: FUNCTIONS USED BY RUN-TIME SCHEDULER 59
APPENDIX C: CODE FOR CALLED PROCESSES

81
APPENDIX D: CODE CREATING THE PIPES

85
INITIAL DISTRIBUTION LIST

87

'

LIST OF FIGURES

1.1 Internal layout of AUV-II 2

1.2 Data-flow diagram for on board processing 3

2.1 Timing mechanism for two independent sets 9

3.1 Calls associated with events 20

3.2 Useful calls associated with pipes 20

3.3 Missed execution due to not waiting in a pause 22

3.4 Correct number of executions 22

3.5 No periodic execution in a set of two processes 23

3.6 Algorithm to assign priorities to aperiodic processes 25

3.7 Order in which priorities will be assigned 26

3.S Priority assignment not using combined process concept 27

3.9 General structure of a called process 28

3.10 Main menu for the run-time software 29

3.11 Display on the screen of the attributes 30

3.12 Process set wTith different execution frequencies for Experiment 1. . . 33

3.13 Flow diagram in experiment 1 34

3.14 Timing diagram for experiment 1 35

3.15 Processes set for experiment 2 36

3.16 Order in which priorities are assigned 37

4.1 X software environment 41

4.2 Main window 44

4.3 GUI window diagram 45

4.4 Select policy window 46

vi

4.5 Select/Add tasks window 48

4.6 Change parameters window 49

VI

1

ACKNOWLEDGMENT

I owe some thanks to a few people who supported me all the way along to make

the completion of this thesis possible. I am greatful to my advisor Shridhar B. Shukla.

Without his help, wise advice, and cooperation, I wouldn't have finished my thesis.

I would also like to acknowledge my wife, Gelly, for the understanding and love

she provided me during this hectic period of our lives.

vni

I. INTRODUCTION

A. BACKGROUND

1. NPS AUV-II

The Naval Postgraduate School is currently developing an Autonomous

Underwater Vehicle, AUV-II, which is an intelligent, robot submarine. Figure 1.1,

which has been provided by the NPS Computer Science Department, displays an

internal layout of the AUV-II. The microprocessor that is used is a Motorola 68030

with 2.5 Mbytes of RAM and 4 Mbytes of EPROM, centered around a twelve slot

G-96 bus supplied by the GESPAC corporation. It also has a 200 megabyte hard

disk, parallel and serial communication ports, and analog to digital and digital to

analog channels.

The operating system is OS-9, developed by Microware Systems Corpora-

tion [Ref. GES88]. It is an operating system designed to support real-time appli-

cations. It has a built-in editor, file system, compilers, ability to support local area

networks, etc. The real-time features that OS-9 supports are timers, process cre-

ation and deletion, process priority assignment, process scheduler, synchronization

primitives etc.

2. Data-flow for On-board Processing

The AUV-II, in a typical mission, needs eight processes to be running.

Six of them are periodic and two aperiodic. These processes must communicate

with each other and implement the flow diagram that Fig. 1.2 displays [Ref. F191].

The periodic processes are: execute mission, guidance, autopilot, process sonar data,

navigation, and monitor system status. They are executed at 10 Hz. Aperiodic

Figure 1.1: Internal layout of AUV-II.

z
u
7.

7 U
o2
%o
mm M \

2 a
\

cc

o
< %
cc -J
u z^
fia

O
Zca
*Q

Figure 1.2: Data-flow diagram for on board processing.

processes are: avoid obstacle and plan/replan mission. The AUV-II, by executing

these processes in the appropriate order, and by having all the required information

from its sensors, completes its mission successfully. The main sensors with which the

AUV-II is equipped are gyros for dead reckoning and sonar for real-time navigation

and target identification.

3. AUV-II Real-time Programming Environment

At present, the code that is used for the operation of the AUV-II is a

single sequential program. This program mainly consists of the initialization part

and a loop. In the initialization part, the user provides the operation instructions.

In the timed main loop, the program executes all the required instructions for the

AUV-II operation. Execution in a single loop is very convenient for applications that

execute only a few tasks at the same frequency. It is extremely difficult to design this

loop for a large number of tasks, especially when those tasks have different frequencies

or some of them have to execute in an aperiodic fashion.

This study separates the operation instructions from the main program to

form a set of independent tasks. In this thesis, the words task and process are used

interchangeably. The main program consists only of functions that are needed before

the start of the execution. The user has only to specify the processes that the AUV-II

has to execute and initialize the execution values. Since the user of this program is

likely not to be an expert in real-time systems, a user interface capable of hiding all

the details from the user is created.

The whole design is based on the currently used hardware platform but

effort has been made to make the software compatible with future hardware upgrade.

In case this is not possible, the general ideas of the design are selected in such a way

that they can be used even under major hardware modifications. As an example,

the selection of the OS-9 PIPE as a synchronization primitive that is discussed in

Chapter III, is still valid if the host computer is replaced by a transputer board, and

the use of pipes is replaced with the use of messages.

B. OBJECTIVES OF THE STUDY

This thesis is a continuation of [Ref. Le91], in which a scheduler capable of

scheduling independent periodic processes according to the rate monotonic algo-

rithm was created. The objectives of this thesis are:

• Create a scheduling scheme capable of scheduling periodic and aperiodic pro-

cesses.

• Provide the required synchronization in processes dependent on each other.

• Study the effect of the synchronization on schedulability under rate monotonic
algorithm.

• Verify the capability of the scheduling scheme to be used in the AUV-II.

• Design a framework for a Graphical User Interface (GUI) that will be used when
the current host computer is replaced by a portable workstation.

C. THESIS ORGANIZATION

Chapter II presents the scheduling and synchronization requirements of real-

time systems. It also presents how the schedulability is affected by the synchroniza-

tion. Chapter III presents, the implementation of scheduling and synchronization

selected for the AUV-II in detail. This chapter also presents the performance of the

selected scheduling scheme together with the experiments that are used to verify the

performance. Chapter IV presents a design of a Graphical User Interface that can be

implemented when the current computer is replaced by a portable workstation. Fi-

nally Chapter V concludes what this study has achieved and provides some directions

for further improvement.

II. ISSUES IN REAL-TIME SYSTEMS

A computer system is called real-time when it can support the execution of real-

time applications. Real-time applications differ from ordinary computer applications

because they have strict timing requirements. These requirements almost always are

connected with deadlines of the tasks, which is the time that a task has to finish its

computation. Deadlines can be either hard or soft. If the results of a computation

are useless after the deadline, it is called hard; if their validity only starts to degrade

then it is called soft.

In most real-time applications, more than one task has to run at the same time.

It is easy to handle that if one processor is assigned for every task. In uniprocessor

applications like the AUV-II, this cannot happen. For that purpose, a multitasking

operating system that fakes multiple processors, like OS-9 does, has to be selected.

A. REAL-TIME SCHEDULING

Whenever more than one task is runnable, there has to be a mechanism that

decides which one to run first. This decision mechanism can be a part of the operating

system, it can be a process outside the operating system called as application sched-

uler, or it can be a part of the running tasks. Its objective is to assist the scheduler in

the operating system according to the application requirements. It is one of the most

important parts in a real-time application because the decisions of the scheduler will

determine how the computation time of the processor is going to be used in the most

effective way, and therefore, if any deadlines are going to be missed.

Complete analysis of the different scheduling algorithms can be found in [Ref.

Ta87]. As reported therein, a scheduling algorithm, in order to be effective, has

G

to be priority driven, and not priority independent. This is because all tasks are

not equally important at a specific time and because priority independent scheduling

cannot provide any guarantees that the timing constraints are satisfied. The algorithm

has to be preemptive, as against run to completion, in order to stop a task that is

being executed for a more important one in such a way that as few deadlines as

possible are missed.

1. Static Scheduling

A scheduling algorithm is said to be static or fixed if the priority is assigned

once in the process (probably before the beginning of the application) [Ref. LA90].

An example of a static algorithm is the rate monotonic algorithm [Ref. LL73]. These

algorithms can guarantee only average performance, since the decision of the scheduler

is based on the assigned priorities and not on the current conditions. For periodic

tasks, the priorities are assigned according to a predetermined characteristic like the

period. For aperiodic tasks, the priority is also assigned according to predetermined

characteristics, but, depending on whether the deadlines are hard or soft, either the

average value or the worst case value can be used.

2. Dynamic Scheduling

A scheduling algorithm is said to be dynamic or time driven when the

priority can change with time. Examples of dynamic algorithms are earliest deadline,

minimal laxity, etc. These algorithms have a better performance than static ones.

Most of the dynamic algorithms handle the periodic and aperiodic tasks in the same

way, since the decision of the scheduler is based on the current conditions. The main

drawback in the dynamic algorithms is that they are difficult to implement. [Ref.

LA90]

3. Rate Monotonic Scheduling

As has been shown by Liu and Layland, the optimum fixed priority schedul-

ing algorithm is the one that assigns priorities to a set of independent tasks according

to their request rate; the higher the request rate, the higher the priority [Ref. LL73].

This is known as rate monotonic priority assignment.

The rate monotonic algorithm can ensure, for n independent tasks, that all

the deadlines will be met if the conditions of the theorem proved by Liu and Layland

are met [Ref. LL73]. It states that

the upper bound to processor utilization u for a set of n independent tasks

is given by:

u = E^<n(2*-l) (2-1)

where Ct
is the execution time and T, the period of the i process.

It is possible to increase the CPU utilization and still meet all the deadlines.

This is specified by the theorem [Ref. LSD89] which states that

a set of n independent periodic tasks scheduled by the rate monotonic al-

gorithm will always meet its deadlines if:

T
Vi, 1 < i < n. min Y^ Vri-~ < 1 (2.2)

where R t
= {(k,l)\l < k < i,l = 1,..., [^-J }, T3

the period and Uj the

process utilization of the i process.

Although the rate monotonic algorithm is not the optimal scheduling al-

gorithm, it is very important for the following reasons:

• The most important task, in an independent set of tasks, will meet its deadlines
even under temporary overload.

• It provides fast response time for the aperiodic tasks, while it is able to meet all

the deadlines for the periodic tasks. This is of great importance for the AUV-II
where some of the tasks are aperiodic.

• The priorities can be modified in such a way that the required synchronization
between the tasks can be achieved

• It can be used to schedule tasks where computation time is known imprecisely,
as in many AUV-II algorithms.

8

Figure 2.1: Timing mechanism for two independent sets.

4. Data-flow Scheduling

Data-flow scheduling is completely different from the previously defined al-

gorithms because it does not need any real-time application scheduler. In this scheme

of scheduling, the start of the execution of a process is triggered by receipt of input

data. The basic advantage of data-flow scheduling is that it combines synchronization

among tasks with scheduling. Other scheduling algorithms, on the other hand, are

designed for independent tasks and incorporate additional schemes for synchroniza-

tion.

In data-flow scheduling, if processes have to execute in a periodic fashion,

a timing mechanism has to be inserted for each independent set of processes. This

mechanism can be either a delay in one of the processes or an extra process, as in

Fig. 2.1, that will implement only the periodicity. This causes all the other processes

that depend on this process to also keep the periodicity. Data-flow scheduling can

be used even for independent processes, if each process is handled as an independent

set. This is not efficient because processor time is spent on each individual timing

mechanism and the set of tasks becomes bigger causing slower process switching.

All the previously outlined scheduling algorithms can be used in conjunc-

tion with data-flow scheduling in order to make a selection for the next process to run

when more than two processes are ready to be executed. This can happen in the case

where more than one independent set of processes is being executed, as in Fig. 2.1,

or even in the same set when more than two independent processes exist. Data-flow

scheduling is suitable for applications like AUV-II where all the processes are closely

dependent and only one timing mechanism can achieve the required frequency of

execution. The required data consistency is intrinsic to the scheduler.

5. Schedulability Analysis

Schedulability analysis is the process of verifying if a given set of tasks can

meet its deadlines when using a specific scheduling algorithm [Ref. TK88]. The use

of a schedulability analyzer is very important because it provides a tool to predict if

a specific set of tasks can be used before the actual execution.

In order to carry out schedulability analysis, certain basic information

about the tasks is required regadless of the scheduling algorithm. This informa-

tion, for periodic tasks, is the execution time and the period. For aperiodic tasks,

it depends on the deadlines. If the deadlines are hard, the execution time, worst

case interarrival interval, and expected response time are needed. If the deadlines

are soft, the execution time, mean period, standard deviation of the period, and ex-

pected response time are needed. In general, this information is called attributes of a

task. The results required from the schedulability analysis are the CPU utilization,

prediction of any possible missed deadlines, tasks which are going to miss a deadline,

and expected response time.

10

B. REAL-TIME SYNCHRONIZATION

The tasks of a real-time application are not usually independent. These depen-

dencies arise from the need for communication between the processes to synchronize

with each other for correct and fai sharing of logical or physical resources. Since each

task has some limited time bounds within which it has to be executed, these de-

pendencies make the timing requirements more stringent. These requirements result

in a reduced utilization of the processor leading to an increased number of missed

deadlines for a given processor load. It is important to use the right synchronization

protocol in order to provide the highest possible utilization, and at the same time,

avoid some undesirable situations like priority inversion, where a high priority task

is blocked by a lower priority task for an unpredictable period of time [Ref. SRL91].

In most real-time applications, processes which are working together write and

read the same shared data. This can cause race conditions, in which multiple processes

try to use the shared data with unpredictable results. The only way to avoid race

conditions is to achieve mutual exclusion, that is, when a process is using the shared

data, others are excluded from using it. Our objective is to provide synchronization

that avoids race conditions and maintains data consistency. Data consistency prevents

a process from using the shared data before it is updated. There are various primitives

which facilitate such synchronization, such as:

Semaphores: A semaphore is a variable with integer values, usually only and 1

[Ref. Di88, Ta87]. Semaphores can be used in such a way that means that

the shared data has not be updated or someone else is using the shared data

and 1 means that the new data is available and no one else is using it. Since

the semaphores are always supported by hardware instructions like TEST AND

SET LOCK, mutual exclusion is guaranteed.

11

Monitors: Monitors are programming language constructs that group together vari-

ables, data structures, and procedures [Ref. Ta87]. The most important prop-

erty of the monitors is that they provide mutual exclusion without any further

design by the programmer. When a process is using a monitor, all other pro-

cesses that compete for access to the monitor are suspended until the monitor

is not in use. With proper use of the variables or with one more semaphore, the

desired data consistency can also be achieved.

Events: Events are a special kind of variable [Ref. Di88]. The values of events

(E) change only with instructions supported by hardware, like Signal(E) and

Wait(E). Proper use of event instructions causes a process to be executed only

if the required conditions have been met. As a result, both mutual exclusion

and data consistency can be achieved.

Pipes: Pipes are sequential files which never leave the system's RAM memory [Ref.

Di88]. Usually these files are small, since data stays there till a process reads

from the pipe. What makes pipes useful is that, if a process tries to read from

an empty pipe, it is suspended until some other process puts data in the pipe.

With the above property, it is ensured that the data is always updated. The

main drawback in the use of pipes is that they can be used for communication

between only two processes, one to write and the other to read.

The purpose of using priority driven, preemptive scheduling is to break the

execution of a lower priority process when a higher priority process is ready to run.

If, at the same time, a synchronization primitive like semaphores is used to avoid race

conditions, the following problem can occur. Consider two processes, P\ and P2 with

periods T\ > T2 , that access the same shared data. In rate monotonic assignment, Pj

has a higher priority than P2 . Suppose that P2 first accesses that data and locks the

12

semaphore that controls the access. If, at that time, Pi starts execution, it will find the

semaphore locked and will have to wait for P2 to finish its critical section. However,

that delay may be longer than the critical section of P2 itself if P2 is preempted by a

third intermediate priority process. This may lead to uncontrollable blocking.

Such blocking of a higher priority process by a lower priority one, for an un-

predictable period of time, is called priority inversion. The easiest solution to this

problem is not to allow a process to be preempted at the time it is executing its

critical section. However, this solution creates unnecessary blocking of processes not

using that shared data and is appropriate only for very short critical sections. In

order to avoid priority inversion, better solutions, like the priority inheritance pro-

tocol [Ref. SRL91], priority ceiling protocol [Ref. SRL91] and stack-based resource

allocation [Ref. Ba90] have been proposed in the literature. Each one of the above

has a different way of reducing the timing constraints that created from the synchro-

nization. In the next section, we shall discuss some commonly used synchronization

protocols.

C. TECHNIQUES OF REAL-TIME SYNCHRONIZATION

1. Two Phase Locking Protocol

An approach to achieve the required synchronization and data consistency

between the tasks is the two-phase locking protocol. This protocol, as implied by

its name, accesses the shared data or resources in two phases. In the first phase, a

task tries to lock all the synchronization primitives for the data it needs to update or

read. If it succeeds in the first phase, the task proceeds to the second phase, where

it uses the data and, at the end, releases the locks. If the process is not able to

lock all the synchronization primitives, or if some data is not already updated, the

process either stops a lower priority process or releases all the locks and starts from

13

the beginning. This technique is not desirable when a high processor utilization is of

great importance. Also, the locking of all data structures that are going to be used

can cause priority inversion problems.

2. Priority Inheritance and Priority Ceiling Protocol

The complete definition of these two protocols can be found in [Ref. SRL91].

We briefly describe them here. The idea upon which the priority inheritance protocol

is based is that when a process with low priority blocks the execution of a higher

priority one, it inherits the highest priority of all the processes it blocks for the exe-

cution of its critical section. This enables the low priority job to finish its execution

without the possibility of being preempted from an intermediate priority job. Under

this protocol, although data consistency is achieved, the problems of deadlock and

chained blocking have not been avoided [Ref. SRL91]. Chained blocking is caused

when a process has to wait for more than one lower priority process to unlock the

synchronization primitive being used.

In the priority ceiling protocol, the same idea as in priority inheritance is

used. However, it guarantees that, if a job is preempted in its critical section, the new

job will execute at a priority higher than that of all the preempted critical sections.

This is realized by assigning a priority ceiling to each semaphore, which is equal to

the highest priority of a task that may use that semaphore. A job is allowed to

start the execution of a new critical section only if it has a priority higher than all

the priority ceilings for all the semaphores locked by jobs other than itself. In this

protocol, unlike the priority inheritance protocol, deadlocks and chained blocking are

avoided, but a new kind of blocking, called the ceiling blocking, is present. Also,

the priority ceiling protocol creates unnecessary blocking in processes that are never

going to use a specific semaphore. This happens because priorities are assigned to

semaphores assuming that all processes are dependent on each other.

14

3. Data-flow Synchronization

In many real-time applications like the AUV-II, where the periods of the

processes and the synchronization requirements are known in advance, it is not re-

quired to use a complicated protocol, like the priority ceiling protocol, to implement

synchronization. This reduces the size of the application scheduler, since there is

no need for the extra lists to hold the different priorities of the semaphores, the

semaphores that are locked, etc. Also, it reduces the computation time required

to select the next process to run, since the scheduler has to select only from those

processes that have received the updated data.

In data-flow scheduling, synchronization can be achieved easily using sig-

nals between processes. The signals can contain the data to be transferred. A process

is ready to start execution only if it has received data from all the preceding pro-

cesses that have completed execution. A process, when it completes, sends signal to

its succeeding processes. Until all such signals are received, a process does not start

execution, thus ensuring consistency of data and mutual exclusion.

D. EFFECT OF SYNCHRONIZATION ON SCHEDULABILITY

The application of the two phase locking protocol is limited in real-time appli-

cations. It has low processor utilization because a process has to be terminated in

the middle of its execution when a resource is not available or when a process with

higher priority needs the same resource. Also, under these conditions, the application

behavior cannot be predicted correctly since the result is based on the chance that

the resources will be available.

For the priority ceiling and the priority inheritance protocols, the following

corollary has been proved in [Ref. SRL91].

15

A set of n periodic tasks using the priority ceiling protocol can be scheduled

by the rate monotonic algorithm if the following condition is satisfied:

S8+M (fr--fe) s,,p*- 1) (23)

where u is the utilization factor, C, is the execution time, T, the period

and B{ is the worst timing blocking of the i process.

Also, Equation (2.2), which enables a larger upper bound of the utilization, gets

a new form as below [Ref. SRL91].

A set of n periodic tasks using the priority ceiling protocol can be scheduled

by the rate monotonic for all task phasing if:

\/i, 1 < i < n, min
(k,l)tR,

1 — 1 HP

lk
Uj

Trk

in
ITu lTk

< 1 (2.4)

where R{ = {(k, l)\l < k < i, / = 1, ..., [j J}, C{ the execution time, T, the

period, B
t
the worst timing blocking of the i process, and Uj the process

utilization.

It can be derived from the above two modified theorems that the processor utilization

is changed as if one new process is included with period equal to the worst case

blocking.

The expected schedulability of the data-flow scheduling combined with the rate

monotonic algorithm is almost the same as the one provided for the rate monotonic

algorithm. The only difference is that each independent set of tasks is treated as

one task. In that case, since the number of tasks, n, in Equations (2.1) and (2.3)

is reduced, the upper bound of processor utilization is increased. As an example,

consider the seven processes of Fig. 2.1. According to Equation (2.1), the upper

bound on processor utilization is expected to be less than or equal to 7(27 — 1) = 0.73.

However, since there are only two independent sets of tasks, the processor utilization

is expected to be less than or equal to 2(2? — 1) = 0.83. Since, in each independent

set, the processes satisfy the condition y1 - [^J = (fractional part of ^ = 0) for

16

i = 1,2, ...,m — 1. This means that processes all have the same basic period or an

integer multiple of that basic period. According to [Ref. LL73], the utilization bound

can further increase to 1.0 when no aperiodic processes are included in the process

set.

17

III. SCHEDULING AND SYNCHRONIZATION
FOR AUV-II

At present, the AUV-II scheduler uses the rate monotonic algorithm, appropri-

ately modified to work on the OS-9 operating system. It can schedule only periodic

processes and it does not provide any synchronization between the processes. The

scheduler first calculates the priorities that will be assigned to the processes according

to the rate monotonic algorithm. The priorities are assigned with esufficient spacing

so that aging, described later, will not have any effect. The process set is then an-

alyzed for schedulability according to Equation (2.2). If the set is schedulable, the

scheduler forks all the processes. The scheduler has an array which keeps the next

time at which each process will be ready to start execution. By following these re-

quirements in an infinite loop, the scheduler is able to send wake-up signals to the

processes and move them from the sleeping queue to the active queue. The above

loop of sending wake-up signals instead of creating and killing the process every time

was selected since it does not waste computing time in the process initialization every

time it is executed. This real-time scheduling mechanism needs to be augmented to

incorporate process synchronization and aperiodic processes. This chapter describes

how this is done by using PIPES for data-flow synchronization on OS-9.

A. OS-9 SUPPORT FOR SCHEDULING AND SYNCHRONIZATION

OS-9 is an operating system designed to support real-time applications. It has

its own scheduler with two main queues - one with the active processes and the other

with the sleeping processes [Ref. Di88j. When a process is forked, it is placed in the

active queue according to the assigned priority. The priorities can take values from 1

18

to 65,556. A process is placed in the sleeping queue if there is a pause () command

in its source code or if it is waiting for I/O.

The OS-9 scheduler finds out the current process at regular intervals. This is

the process at the top of the active queue and is the process that runs next. The

regular interval is called a tick and lasts 10 msec on the system being used.

The main steps in the OS-9 scheduler are the following:

• It checks for sleeping processes that are ready to move in the active queue.

• It checks the current process and the active queue to find out which one has the

highest priority to become the next current process.

• It starts the execution of the current process.

One of the most interesting characteristics of the OS-9 scheduler is aging. With

aging, priorities of the tasks in the active queue are increased by one at every tick.

This characteristic has been included in the OS-9 scheduler to provide fairness, but it

causes problems when RMS is attempted on top of OS-9. The priorities of processes

must follow the order dictated by RMS, but they must be sufficiently separated to

make aging ineffective.

Synchronization can be achieved in OS-9 by using PIPES and Events. There

are two kinds of pipes - un-named and named. The main difference between them is

that a process cannot write to an unnamed pipe if the reader is not ready to receive

the information. Un-named pipes are mainly used by the OS-9 shell. Events and

pipes are supported with the C language calls. The most useful ones are described in

Fig. 3.1 and Fig. 3.2 respectively [Ref. GES90].

B. IMPLEMENTATION OF DATA-FLOW SYNCHRONIZATION

The new run-time scheduler is highly dependent on the synchronization primi-

tive that has been selected. Both, events and pipes, are primitives which can be used

to implement synchronization between the processes of AUV-II. Since events require

19

Call Meaning
_ev_creat Create an event structure

_ev_link Increment event count

_ev_unlink Decreament event count

_ev_wait Process waits until Event in boundaries

_ev_signal Increment the event variable

_ev_read Reads the event variable

_ev_set Sets the event variable

Figure 3.1: Calls associated with events.

Call Meaning
_GC_Rdy Tests whether data are ready in bu ffer

_GC_Size Returns the size of the pipe buffer

close() Close an open path

create() Creates a new pipe

openO Opens an existing path

readQ Reads bytes from path

readlnO Reads one line from path

vriteO Writes bytes to path

writelnO Writes one line to path

Figure 3.2: Useful calls associated with pipes.

20

a more complicated program and offer functionality not required in AUV-II, use of

pipes was selected. Selection of the appropriate primitive was based on the following

considerations:

• The critical section in the communication between the processes must be small

and consist only of writing and reading some data.

• Events require construction of the data structure to hold the communication
data.

• For each data structure, two events are needed; one implements the mutual
exclusion in the use of the data structure and the other guarantees the data

consistency.

• The output of one process is used by more than one processes only in one case.

All the above observations strengthen our decision to select pipes as the right syn-

chronization primitive for the AUV-II.

By selecting pipes as the synchronization primitive, some major modification

had to be done in the run-time scheduler, developed in [Ref. Le91], that changed

completely the way the scheduler worked.

After the communication via pipes was included in the tasks, each task could

wait for a signal from the run-time scheduler each time it starts execution and then it

could wait for some output to be placed in the pipes that it reads. This could cause

a process to stop execution at least twice. Also, as in Fig. 3.3, if the process has not

finished the execution at the time that the wake_up() signal is sent, the processes

misses the next execution.

The solution to the above problem is given in Fig. 3.4. This solution discards

the pause () at the end of each cycle in the called process and the part of the run-time

scheduler that sends the wake_up() signal. Thus, the process now waits only for the

data to be in the pipe.

The next step creates periodicity in the set of processes. This is done by an

extra process created with only the purpose of writing a dummy message on a pipe as

21

wake-up
signal

I

_ wake-up _.
D**

signal
Dat*

in Pipe in Pipe

time

Figure 3.3: Missed execution due to not waiting in a pause.

time

Figure 3.4: Correct number of executions.

22

time

time

Period

Figure 3.5: No periodic execution in a set of two processes.

in Fig. 2.1. The dummy message is read from the process with the highest frequency

in the set. The timing process code is similar to the called processes code, outlined

in Appendix C.

This scheme of synchronization has the advantage that, in a temporary processor

overload, the dummy messages will be accumulated in the pipe. So, after the overload,

the processor will execute all the processes for the required number of times without

missing any of them. Thus, the average processor utilization can be close to 1.0.

The above data-flow scheduling cannot guarantee the user that each process

will run at exact periodic intervals. This is because of the required communication

between processes and it is more likely to happen if a process depends on a process

with lower frequency. For example, in Fig. 3.5, the process PI that has a period of 20

ticks, over an interval of 20 ticks, releases two sets of information. This information

is used by process P2 that has a period of 10 ticks over two executions. As a result,

23

P2 is executed twice in the second 10 ticks interval and is not executed in the first

10 ticks.

What the scheduler can ensure in the above case is that, at time equal to the

least common multiplier (LCM) of all the processes periods, each process i will execute

LCM/T, times. For the above example, LCM = 20 ticks; so PI will execute 10/20 =

1 times and P2 will execute 20/10 = 2 times over an interval of 20 ticks. If the above

condition is acceptable, this scheduling scheme is better than the old one because the

most likely result with the old algorithm under a high processor utilization is that P2

would miss a deadline.

The aperiodic processes can also be integrated with the above scheme of schedul-

ing. One difference between them and the periodic ones is the trigger that will cause

the start of the execution. For the periodic ones, the trigger is the timing process.

For the aperiodic ones, it is an external event that will happen and cause some data

to be written in the pipe, which the aperiodic process is waiting to read. For example,

in the AUV-II, the task that is processing the sonar data, if it decides that there is

an obstacle, will write in the pipe obstacle alert and the process avoid obstacle will

start execution.

Another difference in incorporating aperiodic processes with periodic ones is

the way the priorities are assigned. An array is created for the periodic processes.

The first process in that array is the one with the smallest period, and therefore, the

highest priority. The last one is the one with the largest period, and therefore, the

lowest priority [Ref. Le91]. For the aperiodic processes, since the average period in

which those processes arrive is not of great importance, another criterion had to be

found according to which they will be placed in the array and the priorities will be

assigned.

24

for (1=1
;
i=#of aperiodic processes ; i=i+l)

{

find lowest priority for combined process (i)

place the i th process in that position;

remove the :L process from the list;

}

Figure 3.6: Algorithm to assign priorities to aperiodic processes.

One approach is to give priorities to the aperiodic processes that are either

higher or lower than the periodic ones. After running some sets of tasks with such

assignment, it was found that some aperiodic processes with low timing requirements

were blocking the execution of periodic processes without any reason. Also, aperiodic

processes with high timing requirements were blocked from periodic ones with lower

timing requirements. The solution is an algorithm to enable an aperiodic process to

block only the required number of periodic processes in crder to achieve the expected

response time. The algorithm that has been used is shown in Fig. 3.6. In this

algorithm, the term combined process refers to a hypothetical process with response

time equal to the minimum response time of all the aperiodic processes that have

equal or higher laxity. Its execution time is equal to the sum of the execution times

of aperiodic processes with equal or higher laxity. Laxity is defined as the response

time minus the execution time of a process. In the following example, an application

of the algorithm in Fig. 3.6 is demonstrated.

Example: In this example, all the times are in ticks. Consider four periodic

processes PI, P2, P3, and P4 with execution times Ci=l, C2=3, C3=l, and C4=4.

The periods are Ti=5, T2= 10, T3=10, and T4=20 respectively. Consider two aperiodic

processes, Al and A2, with execution times, C,4i= 10 and Ca2=6, average interarrival

25

No Name Period Exec.Time Resp .Time
[tick] [ti ck] [tick]

1 PI Zi = 5 Ci = 1

2 Al TM = 100 Ca\ = 10 Rai = 20

3 P2 T2 = 10 Ci = 3

4 A2 TA2 = 100 Ca2 = 6 RA2 = 30

5 P3 T3 = 10 c3 = 1

6 P4 T4 = 20 c4
= 4

Figure 3.7: Order in which priorities will be assigned.

periods, 7^1 = 100 and T.42= 100, and maximum response times, i?^i=20 and 72,42=30.

According to the rate monotonic algorithm, the periodic process PI has the highest

priority and P4 has the lowest. The priorities to be assigned to the aperiodic processes

are determined as follows:

• Find the position where the combined aperiodic process for Al, which has re-

sponse time i?coA/i=20 and execution time Ceom\ = 16, meets the timing re-

quirements. That position is between PI and P2, because, in the worst case

that PI, P2, and Al start together at time interval i?coMi=20, PI needs 4, P2
needs 6, and AIcom needs 16 ticks.

• Place Al between Pi and P2.

• Find the position where the combined aperiodic process for A2, which is only
A2, meets its timing requirements. This process can be placed between P2 and
P3 for the same reason.

• Place Al between P2 and P3.

Figure 3.7 displays the final list according to which the priorities are assigned.

If the combined aperiodic process had not been used, Al would have been placed

between P2 and P3. Also, A2 would have been placed between P2 and Al. The

order, in that case, would have been the one in Fig. 3.8. This order is not correct

because A2 has a priority higher than Al. Therefore, Al is not able to meet its

response time if A2 is being executed.

26

No Name Period Exec.Time Resp.Time
[tick] [ti ck] [tick]

1 PI T, = 5 Cx
= 1

2 P2 T2 = 10 Ci = 3

3 A2 TA 2 = 100 Ca2 = 6 RA 2 = 30

4 Al Tax = 100 Ca\ = 10 Rax = 20

5 P3 T3 = 10 c3 = 1

6 P4 T4 = 20 Ca = 4

Figure 3.8: Priority assignment not using combined process concept.

The called processes have the general form of Fig. 3.9. The first modifica-

tion made in the called processes was to include the openQ statment in the ini-

tialization commands so the process can have access to the pipes. Also, a call to

signal_to_run-time_scheduler() is included to signal the scheduler that initial-

ization is completed. The next modification was to include the readQ part in the

repeated commands. The read commands are different if the process tries to read the

output of a periodic process as against that of an aperiodic process. If the process

reads from a periodic one, it directly tries to read the pipe. So, it is suspended until

the information is ready. If, on the other hand, it reads from an aperiodic process,

the readQ is included in an if () statement that first checks the pipe to see if there

is any information ready, as in:

if(information at pipe) then(read(pipe));

This is done because it is not desirable to block the execution of a process for data

that is not always expected to be there. Finally, the write () statement is included

where the process sends the output to other processes.

Since pipes are files, the data transferred has to be characters. However, it

can be formatted in any desired order. At the receiver, it can be modified, without

restrictions, to any kind of variables like integers, floating point numbers, or strings.

li

main()

{

initialization commands;

open(pipes)

;

wake_up_run-time_scheduler()

;

pauseQ
;

while (TRUE)

{

read(pipes)

;

repeated commands;

write(pipes)

;

}

close(pipes)

;

wake_up_run-time_scheduler()
;

exit()

;

}

Figure 3.9: General structure of a called process.

28

MAIN MENU

1 s ADD NEW SET OF TASKS

2 = VIEW TASKS

3 = CHANGE PARAMETERS

4 = MAKE SCHEDULABILITY ANALYSIS

5 = RUN TASKS SET

6 = EXIT

Figure 3.10: Main menu for the run-time software.

For the purpose of collecting the timing data, a function that takes the time

stamp has been included at the beginning and the end of the while () statment. Also,

a delay loop has been included instead of the repeated commands with variable time

length. That delay is now an input variable from the run-time scheduler. The source

code of one of the dummy processes that was used is outlined in Appendix C.

C. USER INTERFACE

The run-time software has been completely changed in order to separate the

initialization, the schedulability analysis, and the task execution part. The code of

the run-time software is outlined in Appendix A and the code of the functions that

are used by the run-time software is outlined in Appendix B. When the program

starts, a menu appears on the screen similar to the one in Fig. 3.10.

By selecting ADD NEW SET OF TASKS, the program first asks the user if he/she

desires to insert the information by using the keyboard or by having the program

read a file. In the latter case, the user has to specify the name of the file. If the

user decides to use the keyboard, the program first asks how many periodic tasks

will be executed. Then, for each one of these, the user has to supply the name, the

29

nrDTnnTP DDnptrccircrLKlUDll> rKUutobLb

NAME PERIOD EXECUTION TIME

PI 1 5 1 1 1

P2 1 10 1 3 1

P3 1 10 I 1 1

P4 1
20 I 4 1

— ;
DrDTnnTr DPnrrccirc ___LrLKlUUlu rnUtLibLb

NAME PERIOD EXECUTION TIME RESP0NCE TIME

1 Al 1 100 1 10 I 20 |

1 A2 1 100 1 6 I 30 I

Figure 3.11: Display on the screen of the attributes.

period and the execution time. After the user has finished with the periodic processes,

the program asks for the number of aperiodic processes. For each aperiodic process,

the user has to specify the name, the average period, the execution time, and the

maximum response time. All the above timing attributes have to be in ticks. When

all the attributes have been inserted, the program sorts the periodic and aperiodic

processes. The periodic processes are sorted in the increasing order of periods. The

sorting for aperiodic processes is in the increasing order of laxity. The data-flow

diagram that the process set implements cannot be changed by using the scheduler at

this time. If the user wants to change it, he/she has to change the pipes. c program

and the called processes.

By selecting VIEW TASKS, an output similar to the one in Fig. 3.11 appears

on the screen. By selecting CHANGE PARAMETERS, the program first asks the user to

specify if he/she wants to change a periodic or an aperiodic process. Then the user,

following the on-screen instructions, can change the name and attributes of a process.

30

By selecting MAKE SCHEDULABILITY ANALYSIS, the run-time software executes

two major objectives. Firstly, it makes the schedulability analysis for both periodic

and aperiodic processes, and at the same time, fills an array with the names of the

processes in the order discussed in Section B. Secondly, it creates an array with entries

of the priorities that each process receives if the user later decides to run the set of

tasks.

The schedulability analysis for the periodic processes is almost the same as the

one explained by B. Leatherman in the [Ref. Le91] and the software mainly consists

of functions that are part of the rate_mono program in the same reference. If the

periodic set is schedulable, the schedulability analysis program displays the remaining

processor utilization that may be used for aperiodic processes. If the periodic set is

not schedulable, it displays the processor utilization and returns to the main menu.

Schedulability analysis of the aperiodic processes is done in two steps. First, the

program checks if the processor utilization that remains from the periodic set of tasks

is sufficient for the aperiodic processes. If it is, the following message is displayed:

Total set SCHEDULABLE

If it is not, the program displays the following message and exits the schedulability

analysis function:

Total set NOT schedulable

In case schedulable set, the software proceeds to the second step. Starting with the

aperiodic process that has lowest timing requirements, it checks if the laxity of that

process is larger than the sum of all other aperiodic execution times. If it is not,

the process may not meet its response time in case that all aperiodic processes start

together. In that case, the first message is augmented as:

But response time of "A2" process may NOT be achieved

31

By selecting RUN TASK SET, the run-time software starts execution of the set of

tasks. This part is extremely dependent on the synchronization primitives that have

been selected. First, it calls a function that forks the process pipes. c which creates

all the pipes. This process remains active until all the tasks finish their execution;

otherwise, if that process were allowed to finish execution, all the pipes would close.

The same function also forks the process start .c that supplies the information that

the set of tasks needs to start execution. The process start .c, at present, just sends

the word "start" in a designated pipe. It can be easily modified to ask the user for the

required initialization information. The code for pipes. c is outlined in Appendix D.

Following this, the scheduler forks all the processes one by one. It stops after

forking each process until the forked process finishes the initialization part. This is

necessary because the initialization part of each process is now longer than its average

execution time. The part of the scheduler that sends the wake-up signals has been

modified as has been explained in Section B.

After the run-time scheduler has forked all the processes, it waits in a loop with

pause () till all the forked processes have completed execution. This ensures that the

scheduler does not exit before all the forked processes have finished execution. Note

that, in OS-9, a child process cannot exist without the parent process.

Finally, by selecting EXIT, the program provides to the user the option to save

the task set names with all the attributes into a file for later use.

D. PERFORMANCE OF PIPE-BASED SYNCHRONIZATION

As described in the AUV-II data-flow diagram in Chapter I, it is likely to have

eight processes. Six are periodic and two are aperiodic. The periodic processes

are designed to run at 10Hz. By using the rate monotonic algorithm, when all the

processes are independent, the expected processor utilization is equal to 1.0 according

32

Name Period Exec.Time
[tick] [tick]

PI Ti = 5 C'i = 1

P2 T2 = 10 d = 2

P3 T3 = 10 C3 = 2

P4 T4 = 40 C4 = 8

Figure 3.12: Process set with different execution frequencies for Experi-

ment 1.

to [Ref. LL73]. When processes are running at different frequencies, the results are

according to [Ref. Le91], with the difference that each independent set of tasks is

treated as one process. We are interested in what the maximum processor utilization

will be when pipe-based synchronization is included for the following situations:

• Only periodic processes are present.

• Both, periodic and aperiodic processes, are present.

Also for the second situation, it is of interest to verify that the response time of the

aperiodic processes is acceptable.

E. EXPERIMENTAL RESULTS

The first set up used to verify the scheduler is one with four periodic processes.

In Fig. 3.12, the attributes of those processes are displayed. Figure 3.13 displays the

data-flow diagram for these processes. The number on the arcs describes how many

items are produced and how many are consumed each time a process is executed.

The above set yields a processor utilization very close to 1.0. The timing diagram of

the process execution is displayed in Fig. 3.14. After the first complete execution, the

set is periodic with period 40 ticks, which is the LCM of all the periods. Increasing

the load delays the first execution of P4.

33

Figure 3.13: Flow diagram in experiment 1.

The second set used to verify the scheduler was one with periodic and aperiodic

processes. This set uses the data-flow diagram in Fig. 3.15 and mimics the AUV

requirements. The process set and the attributes that were used are shown in Fig 3.16.

The timing information obtained from this execution verified the following:

• The aperiodic processes meet all their timing requirements, if their interarrival

time is the expected one.

• The processor utilization can be as high as 1.0.

• The periodicity of the periodic processes, although disrupted by the arrival of

an aperiodic process, is restored eventually after a few cycles of execution.

• All the worst case conditions can be predicted in advance.

34

E

P

Figure 3.14: Timing diagram for experiment 1,

35

Figure 3.15: Processes set for experiment 2.

36

Name Period Exec.Time Resp.Time
[tick] [tick] [tick]

Vehicle system r, = 10 c, =
Sonar 7, — 10 c2 =
System status T3 = 10 c3

=
Navigate T5

= 10 c5 =
Avoid obstacle T4

= 500 c4
= 8 R4 = 20

Execute mission T6 — 10 C6 =
Guidance TV = 10 c7 =

Autopilot 7; = 10 C8 =

Plan mission T9 = 500 c9 = 4 R9 = 100

Figure 3.16: Order in which priorities are assigned.

37

IV. FRAMEWORK FOR A GRAPHICAL
USER INTERFACE

A. GRAPHICAL USER INTERFACE REQUIREMENTS

1. Current Operation

The AUV-II scheduler, as described in Chapter III, performs schedulability

analysis for periodic and aperiodic processes before run-time and performs scheduling

and synchronization at run-time. However, the availability of a schedulability analyzer

and a run-time scheduler does not make the cycle of real-time software development

easy. The user of these tools, who is unlikely to be an expert in real-time scheduling,

must find them easy to use. Therefore, there is a need for a Graphical User Interface

(GUI) capable of accomplishing these functions in an easy way. The current user

interface communicates with the user by asking questions and receiving appropriate

answers.

The information that this simple interface can supply to the user, through

the main menu, is the display of the last selected set of tasks and their attributes.

After the analysis for a given set of tasks has been completed, the software supplies

to the user the processor utilization for periodic tasks, prediction of whether or not

the periodic set is schedulable, total processor utilization, prediction of whether or

not the total set is schedulable, prediction of aperiodic processes that may not meet

their timing requirements, and finally, order in which the priorities will be assigned.

Also, the user can manually find the time intervals at which each process is executed

by reading the output files that are created for that purpose from each task.

The above information appears on the screen once, stays there as long as

the user wants to inspect it, and then disappears. This causes difficulties when the

38

user has to correlate more than one pieces of information at the same time. The only

available solution to this problem is manual tracking. For a large number of tasks,

such handling of information is difficult and error prone. This condition cannot be

improved beyond a limit because the user interface was designed in the old fashion

question-answer process. This interface is also limited by the capabilities of the

currently used display hardware which is a simple VT220 terminal.

2. Requirements

Since the AUV-II is still in its development stage, one or more of the

following scenarios are likely to occur:

• A process can be omitted or combined with other processes. New processes may
be required for the vehicle operation.

• For any task, more than one versions ma)' be written to implement different

algorithms. This will force the user to select from a collection of tasks each
time.

• More than one scheduling algorithm may be implemented. Currently, the user

has a choice of selecting the scheduling algorithm created in [Ref. Le91], or the
one proposed in Chapter III, or the OS-9 scheduler without any enhancement.

• Process attributes may be change because of modifications in the programs.

• After one pass of the schedulability analysis, the user may need to change task

attributes in order to find a workable combination for the application.

Also, the scheduling scheme that has been proposed can be used, not only by the

AUV-II project, but by other real-time applications also.

Given these likely scenarios and the fact that a replacement of the current

computer by a portable workstation is planned, it was decided that a Graphical User

Interface (GUI) would make the AUV-II software development process much simpler.

Using a mouse and a keyboard, this GUI will enable the user to perform the following

tasks easily:

• Select a real-time application.

39

• Select a scheduling algorithm.

• Select the tasks that he/she wants to use.

• Modify the attributes of a task.

• Have all the selected tasks displayed.

• Have the results of the schedulability analysis displayed.

GUI's are, in general, difficult to implement because the designer has to

take care of more than one input device like the mouse and the keyboard at the same

time. This implementation is somewhat simplified by the availability of standard

software packages for manipulating the display. However, the designer must pick

from hundreds of procedures in every package in order to achieve his goal. One

system that provides the necessary tools to a GUI designer is the X window system

that is overviewed in the next section.

B. X-WINDOW SYSTEM

The X Window System is a software environment which is used for engineering

workstations [Ref. Jo89]. It has the capabilities to control the displays and to provide

a standard environment for different applications.

The X environment consists of layers built upon the base window system, as

can be seen in Fig. 4.1 [Ref. Jo89]. The base window system is able to have out-

side communication by using the X network protocol, which is also the only way to

communicate with it.

Because it is hard to use the network protocol directly, there is a low-level

programming interface named Xlib. This is a package containing subroutines in C

language. There are also higher level toolkits by which the details of the network

40

Window,

Session

Managers

High-level X Toolkit Application

Low -level Programming Innterface(Xlib)

Figure 4.1: X software environment.

protocol are masked. Xlib provides a way to receive for different inputs in the appli-

cation programs, such as inputs by pressing keys on the keyboard or by moving and

pressing the mouse buttons. It also provides tools for output that has the following

capabilities.

• The screen can be organized in a hierarchical fashion by overlapping windows,
resizing them, moving them, and putting as many as the application needs on
top of each other.

• Each drawing is bitmapped and corresponds to a specific address on the specific

window.

• High-quality text can be sent to the screen.

• A wide variety of colors, as well as black and white models, can be used.

• Manipulation of different images is possible.

Since Xlib allows the designer to access the above facilities, it provides a rich

environment for building user interfaces. As low level environment, it allows direct

control of all the details required by the application. For these reasons, it was selected

as the most appropriate tool to create a GUI for the AUV-II.

41

As has been mentioned earlier, the way that the application communicates with

the base window system, and vice versa, is via a network protocol. The fundamental

elements of this protocol are requests and events. Requests are messages that originate

from the application and events are messages that originate from the workstation.

The request messages instruct the workstation to take actions required by the

application such as, opening a window, changing the color, displaying some context,

etc. On the other hand, event messages are used for external events that affect the

application, such as a movement of the cursor, a keyboard button press, a press of

the mouse, etc. How the application interprets all these events is determined only by

the designer who writes the appropriate code in the application program.

A GUI creates, uses, and destroys different resources in the course of its op-

eration. These resources are the tools that make the user interface friendly. The

resources that were used in this design are:

• Windows: These are rectangular areas on the video screen. In every window, the

information that the user would like to be visible is specified. These windows
may overlap one another according to the user's input.

• Graphical Contexts: These resources are used to specify the style, size, line width
for the text that the user wants to be displayed, foreground and background
colors, etc.

• Fonts: These resources are the ones that control the character text that are

used, like shape, size, etc.

• Pixmaps: These resources are used by the application to copy information be-

tween windows. This capability is very helpful since all the selections, correc-

tions, additions, etc., may not take place on the main window, but on others
that may open according to the user's will.

• Cursors: With these resources, the cursor shape of the on-screen pointer can
be manipulated which the user can move around by moving the mouse.

C. GUI IMPLEMENTATION

By using Xlib, a GUI consisting of a main window in which all the required

information is displayed and some pop-up windows that could be used for different

selections and modifications was created.

42

1. Main Window

In the main window, as can be seen in Fig. 4.2, the present status of the

process set, together with the selection buttons and the output of the schedulability

analyzer, is displayed.

At the top of the window, there is the title SCHEDULER FOR: followed

by the object to be analyzed. This reflects that the GUI can be used in applications

other than the AUV-II. The present status of the tasks is displayed in the two windows

described below.

• PERIODIC TASKS: In this window, the user can observe all the selected pe-

riodic tasks, their execution time, and their period. This information is also

needed by the schedulability analyzer.

• APERIODIC TASKS: In this window, the user can observe the selection for the

aperiodic tasks, their execution time, mean period, standard deviation from the
mean period, and the maximum response time in which the process is expected
to finish execution.

Output of the schedulability analyzer is displayed in two windows as described below.

• CPU UTILIZATION: It contains information for the CPU utilization for peri-

odic tasks, aperiodic tasks, and the total set of tasks.

• MISSED DEADLINES: In this window, the user can observe if the deadline of

a process was missed and which process missed it.

On top of the main window are the selection buttons. Any of them is

selected by placing the cursor on top of one and clicking the mouse. The use of

textual buttons was preferred instead of icons because it is very difficult to have a

design representing the required meaning. The selection buttons are the following:

• SELECT POLICY.

• SELECT OBJECT.

• SELECT/ADD TASKS.

43

<
• •

O

w

c
w
m
o

B

(A

E

5

9
E
3

&
VI

£

>
9
o
«!
VI

"8

9a
e
tt

9
g

9
E
3
o
9
X
9

CO

co
<

o
5
o
5u
Qu
<

o o

o oo o—- i-H

Oo oo o
rr to

oo o

ea
c
8?

\
m

U

z

>2

z

a
<
Q

a
Ed

r
9
a

•
E
3
e

3
3

s
X
9

<

U
5
o
5
Ed
a.

aulop_l

40

400

mlsslon_plan_2

200

5000

navlgaUon_3

250

4000

°2

la

z
o

<

13

E-

3
a.
U

EDO

Figure 4.2: Main window.

44

MAIN
WINDOW

SELECT
OBJECT

SELECT
POLICY

SEL/ADD
TASKS

CHANGE
Parameters

Figure 4.3: GUI window diagram.

• CHANGE PARAMETERS.

• SCHEDULABILITY ANALYSIS.

• RUN.

• QUIT.

The results of selecting each one of these buttons are listed in the next section.

2. Pop-up Windows

The first four buttons open the pop-up windows and the following three

call the appropriate function. Figure 4.3 displays how the user can move around the

windows.

By selecting the button SELECT POLICY, the window in Fig. 4.4 opens

on top of the main one. With this, the user can select the scheduling policy that

he/she wants to use in order to execute the set of tasks or to perform schedulability

analysis.

By selecting the button SELECT OBJECT, a window similar to the one

in Fig. 4.4 opens. With this option, the user can select the object for which this user

interface will be used. Also, the title on top of the main window changes. In both of

the above windows, the different options are read from a file.

45

B

O
fa

C
W
5
O
02

3

gen

O
i—

i

o
Oh

HO
w

Ji W

o oo o oo o a
*» m <»

o oo o in^ c* m

o o

ao oo o

Q

$

<A

2
O

5

Figure 4.4: Select policy window.

46

By selecting the button SEL/ADD TASKS, the window in Fig. 4.5 ap-

pears. This window consists of two subwindows - one for periodic tasks and the other

for aperiodic ones. Since it is possible to have more than one programs for each task,

the user can select the ones that he/she wants to use for each experiment. In this

window, the scroll bars can be used to change the selections, the keyboard to add

new ones, and the mouse to either change the default ones. The mouse can also be

used to go to the window CHANGE PARAMETERS and simultaneously close the

present one or to quit this window and go to the main one.

By selecting the button CHANGE PARAMETERS, the window in

Fig. 4.6 appears. It is the one that the can be used to give the tasks attributes

needed by the schedulability analyzer. This window also consists of two subwindows

-one for the periodic and the other for the aperiodic tasks.

By selecting the button SCHEDULABILITY ANALYZER, according

to the selected policy in the SELECT POLICY window, the software calls the function

that implements the specified schedulability analysis and supplies the information in

the windows CPU UTILIZATION and MISSED DEADLINES.

By selecting the button RUN, the software calls the function that starts

the execution of the selected tasks.

Finally, the button QUIT quits the scheduler and closes the main window.

D. PROBLEMS IN THE GUI IMPLEMENTATION

The following problems arose in developing the GUI. First, at the time of the

GUI execution, some windows did not appear on the screen or sometimes they could

not receive an event such as a button press. This was due to an excessive number of

open windows that were created. As an example, in Fig. 4.5, the window that displays

the periodic tasks consists of the window that is displayed, a larger window below the

47

E

O

13
Q
a
u
02

1

CO
«
GO
<!
H
Q

i

H
Ow
w

u
5
o
5
Ed

3
WD
<
E-

U
5
o

Ed
Cu
<

z
OS

5
<y

Da
cd-
X<U2

<
a:
<
PL,

Ed

2
1
U

Li

<
Ed
a

Ed
z

uu —
IAC

UO
wo.

O
5

3 w >
eg C C

OS

<

Figure 4.5: Select/Add tasks window.

48

E

E

Q>
Ed -
X<U2

IS
ice
u 2

§3

Ed El

G5
CD o

a a a
2 2 2333
dO ^ (t

e a

"5 "a

SEE

c e

3 3
* m
01 u
"5 "5

a re

C C

3

I 1°
l g «

<« c c

Q.-2 DC

s s >

c3c"
m c

a.
u

Figure 4.6: Change parameters window.

49

one that appears, and an array of windows in which each window element displays

the attributes of one task. The reason for having a large window is to provide the

user with the ability to scroll the text up and down. The reason of having an array

of windows, one for each task, is to provide the capability to select only one task at

a time. In order to solve this problem, more interactive communication between the

application, the window manager, and the memory manager is needed.

The next problem was the use of the keyboard to add or select some of the tasks'

attributes. Unlike a simple video display terminal where whatever the user types is

displayed on the terminal, in an X window application, when the user presses a key,

an event is sent to a specific window. It is then up to the application to interpret

that event. For modifying task attributes, an entire editor has to be created.

One solution to most of the above problems is the X toolkits whose purpose

is to simplify the GUI programming. One X toolkit that provides all the required

components for a GUI is the Athena widget set. The Athena X widgets consist of a

set of prebuilt windows with special characteristics that can be used as components

to create a GUI. Some of those widgets are menus, dialogue boxes, scrollbars, text

widgets, etc. Our experience in building a GUI using Xlib is aptly summarized by

quoting Mark Langley from [Ref. NO90, page 37]:

Window systems may be simple to use, but they are very complex to

program. The first thing that strikes the novice X programmer is how
complicated everything is. Learning to program the X Window System,
even with the help of the X Toolkit, is a far cry from learning say, the C
programming language...

50

V. CONCLUSIONS AND FUTURE
DIRECTIONS

This chapter summarizes what the study has achieved for the development of

the AUV-II real-time software and provides some directions for further research and

improvements.

A. CONCLUSIONS

The major objectives of this study, as have been specified in Chapter I, have

been accomplished. A scheme capable of scheduling both periodic and aperiodic

processes has been created. Periodic processes are assigned priorities according to

the rate monotonic scheduling. Aperiodic processes are assigned priority in order

to achieve the expected response time, and at the same time, block as few periodic

processes as possible Thus, the scheduling scheme yields a high processor utilization

and handles both kinds of processes smoothly by providing the required frequency in

the periodic ones and the expected response time in the aperiodic ones.

The synchronization primitive that has been selected is OS-9 PIPE. Its use

provides, without any additional programming, both mutual exclusion and data con-

sistency. Although synchronization conflicts with scheduling, this scheme achieves a

utilization close to 1.0 for the AUV-II application which has a single independent set

of processes.

The usefulness of the scheduler for the AUV-II has been verified by creating a

set of processes that mimics the operation of the AUV-II. This set is executed at the

required frequency of 10 Hz and, at the same time, the expected response time for

the aperiodic processes is achieved. This dummy set of processes can be applied in

51

the AUV-II if the idle loop in each process is replaced by a call to an appropriate

function and the inputs and outputs on pipes are replaced with the real data to be

transferred. Finally, a framework for a GUI was designed and experimented with to

provide the functionality required for easy use of the scheduler.

B. FUTURE WORK

At present, the synchronization to be provided has to be coded manually as

described in Chapter III. This coding is required for pipe initialization in the process

that is being called from the scheduler and in the application processes. This can be

further improved in such a way that the user only has to specify the names of the

different pipes, the processes that the pipes have to connect to, and explicitly specify

which of those processes are periodic and aperiodic. An approach to implement this

is to pass the pipes' names as arguments to the different processes, followed by a flag

that determines if the input is from an aperiodic or a periodic process.

The schedulability analysis that has been provided refers only to the processes

timing requirements and does not make any analysis of the data-flow synchronization.

Thus, the scheduler cannot identify inconsistencies in the data-flow diagram. Such

analysis has to be included to ensure a correct application of the synchronization

technique developed. Techniques that can be used for data-flow analysis are provided

in [Ref. LA90].

Finally, if the above facilities are included in the scheduler, the framework of

the GUI can be improved to become more user friendly. The new design, instead of

displaying the names and the attributes of the different processes, can display the

data-flow diagram that those processes implement. Each process can be a node that

displays the name and the attributes. The pipes can be represented as arcs between

the nodes. Those arcs can produce the required arguments that will be given to the

52

processes. The periodic and aperiodic processes can be distinguished at this time

appropriately.

53

REFERENCES
[Ba90] T.P. Baker, "A Stack-based Resource Allocation Policy for Real-time Pro-

cesses'", Proc. of IEEE Real-Time Symposium, pp. 191-200, 1990.

[C190] Michael John Coutier, "Guidance and Control System for an Autonomous
Vehicle" , Master's Thesis, Naval Postgraduate School, Monterey, CA, June
1990.

[Di88] P. Dibble, "OS-9 Insights - An Advanced Programmers Guide to OS-
9/68000", Microware Systems Corporation, 1988.

[F191] Charles A. Floyd, "Design & Implementation of a Collision Avoidance Sys-

tem for the NPS Autonomous Underwater Vehicle (AUV-II) Utilizing Ul-

trasound Sonars'", Master's Thesis, Naval Postrgraduate School, Monterey,

CA, September 1991.

[GES88] "GESMOS-68 OS-9/68000 Operating System", Ver. 2.3, GESPAC, Inc.,

Geneva, SA, 1988.

[GES90] "Microware OS-9/68000 C Compiler User's Manual', Rev. H, Microware
Systems Corporation, Des Moines, IW, October 1989.

[Jo89] Oliver Jones, "Introduction to the X Window System", PRENTICE-HALL,
Ineglewood Cliffs, NJ, 1989.

[LA90] Shem Ton Levi and Ashok K. Agrawala, "Real-time System Design" , Mc-
Graw Hill, USA, 1990.

[Le91] B. Leatherman, "An Approach to Investigate of Real-time Software for the

Autonomous Underwater Vehicle", Master's Thesis, Naval Postgraduate
School, Monterey, CA, June 1991.

[LL73] C. L. Liu and J. W. Layland, "Scheduling Algorithms for Multiprogramming
in a Hard Real-time Environment" , JACM 20, pp. 46-61,1973.

[LSD89] John Lehoczky, Lui Sha and Ye Ding, "The Rate Monotonic Scheduling
Algorithm: Exact Characterization and Average Case Behavior" , Proc. of

IEEE Real-time System Symposium, pp. 166-171,1989.

[NO90] Nye Adrian and O'Reilly Tim, "X Toolkit Intrinsics Programming ManuaF

,

The X Window System Vol. 4, O'Reilly &: Associates, Inc., Sebastopol, CA,
September 1990.

[SG90] Lui Sha and John B. Goodenough, "Real-time Scheduling Theory and
ADA", IEEE Computer, pp. 53-62, April 1990.

[SRL91] Lui Sha, Ragunthan Rajkumar and John P. Lehaczky, "Priority Inheritance
Protocols: An Approach to Real-time Synchronization" , IEEE Transaction
on Computers, vol 39, No 9, September 1990.

54

[Ta87] Andrew S. Tanenbaum, "Operating Systems Design and Implementation"
,

PRENTICE-HALL, INC. , Englewood Cliffs, NJ, 1987.

[TK88] Hideyaki Tokuda and Makoto Kotore, "A Real-time Tool Set for ARTS
Kernel', Proc. of IEEE Real-ime System Symposium, pp. 289-299, 1988.

55

APPENDIX A: MAIN FOR RUN-TIME
SCHEDULER

z^^^-^t***************** ***

Program
Purpose
Author
Description

SCHED.C *

MAIN CODE FOR AUV-II SCHEDULER. *

LTJG D. MAKRIS H.N. *

THIS PROGRAM, IN AN INFINITE LOOP, CALLS THE MENU *

FUNCTION. ACCORDING TO THE USER SELECTION, AN *

APPROPRIATE FUNCTION IS CALLED. *

THE SELECTIONS AVAILABLE TO THE USER ARE: *

1. ADD NEW SET OF TASKS *

VIEW TASKS *

CHANGE TASKS PARAMETERS *

START EXECUTION OF THE TASK SET *

EXIT THE SCHEDULER *

#include <stdio.h>
#include <math.h>
#include <errno.h>
#include <procid.h>
#include <setsys.h>
#include <signal.h>
#include <ctype.h>

1

1

15

#def ine TRUE
#def ine NO
#defme DONE
#def ine SIZE
#def ine MAX.PR

extern int
extern int
extern double
extern char

char

char
char
double

kill() ,os9forkc() ,exit() , intercept ()

;

getpidQ ,_get_process_desc()

;

atof ();
environ;

/ THE FOLLOWING ARRAYS CONTAINS ALL THE ATRIBUTES IN
CHARACTER FORM SO THEY CAN BE PASSED AS ARGUMENTS
INTO THE PROCESSES THAT WILL BE FORKED. */

argl[SIZE] ,+arg2[SIZE] , name [SIZE] ,

Cchar[SIZE] ,+Cchar_ap[SIZE] ,+tot_Cchar [SIZE]

,

Tchar[SIZE] ,+Tchar.ap[SIZE] ,+tot_Tchar [SIZE]

;

arg3[]={"start",0,};
arg4[]={"pipes",0,};
W[SIZE] [SIZE] ,Li [SIZE] [SIZE]

;

icpthand(signum)

56

int signum;
{

/* INTERCEPT HANDLER
fprintf (stderr ,"I received signal in sched.c

}

main ()

{

double T[SIZE] ,T.ap[SIZE] ,tot_T[SIZE]
,

C[SIZE] ,C_ap[SIZE] ,tot_C[SIZE] ,

D_ap[SIZE] ;

int n,aper_no,tot_no , analysis;
int process.pri [SIZE] ,pid;

procid parent

;

char job;

char menu()

;

void create.memory ()

;

void add_new_set ()

;

void view_tasks()

;

void change_parameters()

;

void make_sched_analysis()

;

void run_set ()

;

void stop_screen()

;

void my_end()

;

analysis==0;
pid=getp:Ld(); /* FIND PROCESS ID

'/.d\n", signum)
;

*/

*/
/* FIND NEWSS (START SCHEDULER) ID */

_get_process_desc(pid, sizeof (parent) ,&parent)

;

create.memoryQ; /* ALLOCATE MEMORY IN ALL ARRAYS */
while (TRUE)

{

job = menu(l); /* CALL MANY #1 AND GET USERS ORDER */
switch(job){

case '
1

'

:

analysis=0; /* SCHED. ANALYSIS HAS'T BE DONE */
/* CALL FUNCTION THAT TAKE NEW PROCESSES VALUES */

add_new_set(&n,&C[0] ,&T[0] ,

&aper_no,&C_ap[0] ,&T_ap[0] ,&D_ap[0] ,

&tot_C[0] ,&tot_T[0])
;

break;

case '2'

:

/* CALL FUNCTION THAT DISPLAYS ATTRIBUTES */
view_tasks(n,&C[0] ,&T[0]

,

aper.no, &C_ap[0] ,&T_ap[0] ,&D_ap[0])

;

break;

case '3'

:

57

}

}

}

analysis=0; /* SCHED. ANALYSIS HAS'T BE DONE */
/* CALL FUNCTION THAT CHANGE TASKS ATTRIBUTES */

cnange_parameters(n,&C[0] ,&T[0] ,

aper.no, &C_ap[0] ,&T_ap[0] ,&D_ap[0]);
break;

case '4'

:

analysis=DONE;
tot_no =n;

/* CALL FUNCTION THAT MAKES SCHEDUL. ANLYSIS */
make_sched_analysis(&C[0] ,4T[0] , fttot.no,

&C_ap[0] ,&T_ap[0] ,&D_ap[0] , aper.no, ftprocess.pri [0]

,

&tot_C[0] ,&tot_T[0]);
break;

case '5
'

:

if(analysis==DONE) /* IF SCHED. ANALYSIS HAS BE DONE */
/* CALL FUNCTION THAT STARTS THE EXECUTION */

run_set(&tot_C[0] ,&tot_T[0]

,

&process_pri [0] ,&parent ,tot_no)

;

else{ /* ELSE GO TO MAIN MANU */
printf(" YOU MUST FIRST MAKE SCHEDULABILITY ANALYSIS\n")

;

stop screenO ;

}

break;

case '6'

:

/* CALL FUNCTION THAT KILLS THE NEWSS AND EXITS */
my_end(n,aper_no,&D_ap[0]

,
parent)

;

default

:

printf("\n\t This is not a proper command! Try again. \n");
stop_screen()

;

58

APPENDIX B: FUNCTIONS USED BY
RUN-TIME SCHEDULER

/***
* Program : SCHED.C *

* Purpose : FUNCTIONS THAT ARE CALLED FROM main() IN THE *

* AUV-II SCHEDULER. *

* Author : LTJG D. MAKRIS H.N. *

* Description: THIS CODE CONTAINS ALL THE FUNCTIONS THAT ARE *

* BEING CALLED IN THE AUV-II SCHEDULER. *

* EACH FUNCTION WILL BE DESCRIBED SEPARATELY. *

**

/***
* THIS FUNCTION PROVIDES ALL THE MENUS THAT ARE USED FROM THE *

* SCHEDULER. IT HAS AS INPUT THE NUMBER OF THE MENU THAT HAS TO *

* BE DISPLAYED AND RETURNS THE USER'S SELECTION FROM THAT MENU. *

***/
char menu(chose)
int chose;

{

int job;
char bufer[5]

;

printf ("\n\n\n\n\n\n\n\n\n")

;

switch (chose){
case 1: /* DISPLAYS MAIN MENU */

printf ("\t\t\t\t\t MAIN MENU \n\n");
printf ("\t\t\t\t\tl = ADD NEW SET OF TASKS \n") ;

printf ("\t\t\t\t\t2 = VIEW TASKS \n")

;

printf ("\t\t\t\t\t3 = CHANGE PARAMETERS \n")

;

printf ("\t\t\t\t\t4 = MAKE SCHEDULABILITY ANALYSIS\n")

;

printf ("\t\t\t\t\t5 = RUN TASKS SET \n")
;

printf ("\t\t\t\t\t6 = EXIT \n");
break;

case 2: /* MENU WHEN THE USER SELECTS 1 IN THE
MAIN MENU */

printf ("\n\n\n\n");
printf ("\t\t\t\t\tl = INPUT FROM KEYBOARD \n\n");
printf ("\t\t\t\t\t2 = INPUT FROM FILE \n\n\n");
break;

case 3: /* MENU WHEN THE USER SELECTS 2 IN THE
MAIN MENU */

printf ("\n\n\n");
printf ("\t\t\t\t\tl = CHANGE PERIODIC SET \n\n")

;

59

printf("\t\t\t\t\t2 = CHANGE APERIODIC SET \n\n\n");
break;

}

printf ("\n\n\n\n\n\n\n\n")

;

readln(0,bufer ,2)

;

return (bufer [0])

;

/a***
* THIS FUNCTION ALLOCATES MEMORY FOR ALL THE STRING ARRAYS *

void create_memory()
{

int i

;

for(i=0;i<SIZE;i++){ /* FOR MAX.

argl[i] = (char *)malloc(15) ;/*

arg2[i] = (char *)malloc(15) ;/*

name[i] = (char *)malloc(15) ;/*

Tchar[i] = (char *)malloc(5) ; /*

Cchar[i] = (char *)malloc(5); /*

Tchar_ap[i] = (char *)malloc(5); /*

Cchar_ap[i] = (char *)malloc(5) ; /*

tot_Tchar[i] = (char *)malloc(5); /*

tot_Cchar[i] = (char *)malloc(5) ; /*

EXPECTED # OF PROCESSES */
PERIODIC NAMES */
APERIODIC NAMES */
ALL NAMES */
PERIODIC PERIODS */
PERIODIC EXEC. TIME */
APERIODIC AVER. PERIODS */
APERIODIC EXEC. TIMES */
ALL PERIODS */
ALL EXECUTION TIMES */

/** * ******* ************ ********** ************************* ************
* THIS FUNCTION OBTAINS THE NEW SET OF TASKS THAT THE USER PROVIDES.*
* FIRST ASKS THE USER TO SELECT IF HE WANTS TO ADD FROM A FILE OR *

* BY USING THE KEYBOARD. THEN CALLS THE APPROPRIATE FUNCTIONS TO *

* READ THE NAMES AND THE ATTRIBUTES. FINALLY MAKES SORTING FOR *

* BOTH PERIODIC AND APERIODIC PROCESSES. *

***/
void add_new_set (n,C,T,aper_no ,C_ap,T_ap,D_ap,tot_T,tot_C)
int *n,*aper_no;
double *C,*T,*C_ap,*T ap,*D ap,*tot T,*tot C;

{

char j ob

;

void
void
void
void
void

job

take_initial_values()

;

short _periodics()

;

short_aperiodics()

;

take_aperiodic_values()

;

take_from_f ile()

;

= menu (2); /* INPUT FROM FILE OR KEYBOARD ??
switch(job){

case /* FROM KEYBOARD

*/

*/
take_initial_values(n,&C[0] ,&T[0]);

60

snort_periodics(*n,&C[0] ,&T[0])

;

take_aperiodic_values (aper.no, &C_ap[0] ,&T_ap[0] ,&D_ap[0])

;

short_aperiodics(*aper_no,&C_ap[0] ,&T_ap[0] ,&D_ap[0])

;

break;
case '2'

:

/* FROM FILE */

take_from_f ile(n,&C[0] ,&T[0] ,

aper.no, &C_ap[0] ,&T_ap[0] ,&D_ap[0])
;

short_periodics(*n,&C[0] ,&T[0])

;

snort_aperiodics(*aper_no,&C_ap[0] ,&T_ap[0] ,&D_ap[0])

;

break;
default

:

printf ("\n\t\tNOT a proper command! \n\n");
stop_screen()

;

/***
* THE FOLLOWING FUNCTION RETURNS TO THE PROGRAM THE AVERAGE *

* TASK PERIODS T[], THE EXECUTION TIME C [] AND THE NAMES argl [] OF *

* THE PERIODIC PROCESSES. FIRST ASK THE USER FOR THE NUMBER OF *

* PERIODIC PROCESSES THAT THE SET WILL HAVE AND THEN CALLS A *

* FUNCTION TO HAVE THOSE VALUES ONE AT THE TIME. *

** *********/
void take_initial_values(n,C,T)
int *n;

double *C,*T;
{

int i

;

void one_periodic()

;

printf ("\n\nNumber of periodic processes to schedule =>:");
scanf 07.d",n)

;

for(i=0;i<*n;i++){ /* FOR EXPECTED # OF PROCESSES */
one_periodic(i,&T[0] ,&C[0]);/* TAKE ONE AT THE TIME */

}

}

* THIS FUNCTION SORTS THE PERIODIC PROCESS IN THE INCREASING ORDER *

* OF PERIOD. IF IT FINDS THAT TWO PROCESSES ARE NOT IN THE CORRECT *

* ORDER CALLS THE FUNCTION flip.per TO MAKE THE APPROPRIATE CHANGES.*
*********** ******* + *************.,*»**********************************/
void short_periodics(n,C,T)
int n;

double *C,*T;

{

int i
, j ,a,b;

void flip_per();

Gl

for(i=n-l;i>0;i--){ /* FOR ALL THE PERIODICS */

for(j=0;j<i;j++){ /* FOR ALL ABOVE THE SELECTED ONE */

a=T[j]; /* BOUBLE SORTING */

b=T[j + l];

if(a > b) flip_per(j,&C[0] ,&T[0]);

}

* THIS FUNCTION SORTS THE APERIODIC PROCESS IN THE INCREASING *

* ORDER OF LAXITY. IF IT FINDS THAT TWO PROCESSES ARE NOT IN THE *

* CORRECT ORDER CALLS THE FUNCTION flip_aper() TO MAKE THE *

* APPROPRIATE CHANGES. *

void short _aperiodics(aper_no,C_ap,T_ap,D_ap)
int aper_no

;

double *C_ap,*T_ap,*D_ap;
{

int i
, j , a,b

;

void flip_aper()

;

for(i=aper_no-l;i>0;i—){/* FOR ALL THE APERIODICS */

for(j=0;j<i;j++){ /* FOR ALL ABOVE THE SELECTED ONE */
a=D_ap[j]-C_ap[j] ;

b=D_ap[j + l]-C_ap[j + l]
;

if(a > b) flip aper(j,&C ap[0],&T ap[0] ,&D ap[0]);
}

}

* THIS FUNCTION CHANGES ALL THE ELEMENTS OF THE ARRAYS THAT CONCERN *

* PERIODIC TASKS THAT ARE NOT IN THE APPROPRIATE ORDER AT THE TIME *

* OF SORTING. SPECIFICLY CHANGES THE PERIOD T THE EXECUTION TIME C *

* THE NAMES IN argl, THE PERIODS AND THE EXECUTION TIMES IN THE *

* Tchar AND Cchar RESPECTIVELY. *

*************************************+*******************************/
void f lip_per(position,C,T)
int position;
double *C,*T;

{

double temp_T,temp_C;
char temp_name[15]

;

char temp [5] ;

temp_T=T [position]

;

T[position]=T[position+l]
;

T[position+l]=temp_T;
temp_C=C [position]

;

C[position]=C[position+l]
;

62

strcpy (argl [posit ion+1] ,temp_name)

;

strcpy (temp ,Cchar [position])

;

strcpy(Cchar[position] ,Cchar [position+l])

;

strcpy(Cchar[position+l] ,temp)

;

strcpy (temp,Tchar [position])

;

strcpy (Tchar[position] ,Tchar [position+l])

;

strcpy(Tchar[position+l] ,temp)

;

}

/***
* THIS FUNCTION CHANGES ALL THE ELEMENTS OF THE ARRAYS THAT CONCERN *

* APERIODIC TASKS THAT ARE NOT IN THE APPROPRIATE ORDER AT THE TIME *

* OF SORTING. SPECIFICLY CHANGES THE AVERAGE PERIOD T_ap THE *

* EXECUTION TIME C.ap, THE RESPONSE TIME D_ap THE NAMES IN arg2 , THE*
* PERIODS AND THE EXECUTION TIMES IN THE Tchar.ap AND Cchar.ap *

* CHARACTER ARRAYS RESPECTIVELY. *

^*4**/
void f lip_aper(position,C,T,D)
int position;
double *C,*T,*D;
{

double tempi;
char temp_name[l5]

;

char temp [5] ;

templ=T[position]

;

T[position] =T[position+l]
;

T [posit ion+l]=templ

;

templ=C[position]

;

C[position]=C[position+l]
;

C [position+l] =templ

;

templ=D[position]

;

D[position]=D[position+l]

;

D [position+l] =templ

;

strcpy (temp.name , arg2 [position])

;

strcpy (arg2 [position] ,arg2 [position+l])

;

strcpy (arg2 [position+l] ,temp_name)

;

strcpy (temp, Cchar.ap [position])

;

strcpy (Cchar.ap [position] , Cchar.ap [position+l])

;

strcpy(Cchar_ap[position+l] ,temp)

;

strcpy (temp, Tchar.ap [position])

;

strcpy (Tchar.ap [position] .Tchar.ap [position+l])

;

strcpy (Tchar.ap [position+l] ,temp)

;

63

/**************** ** *************
* THE FOLLOWING FUNCTION RETURNS TO THE PROGRAM THE AVERAGE *

* TASK PERIODS T_ap[] , THE EXECUTION TIME C_ap[] THE MAX EXECUTION *

* DELAY D_ap[] AND THE NAMES OF THE APERIODIC PROCESSES. *

* FIRST ASK THE USER FOR THE NUMBER OF APERIODIC PROCESSES THAT THE *

* SET WILL HAVE AND THEN CALLS THE FUNCTION one.aperiodic *

* TO HAVE THOSE VALUES ONE AT THE TIME. *

***/

void take_aperiodic_values(n,C,T,D)
int *n;
double *C,*T,*D;
{

int i;

void one_Aperiodic()

;

printf ("\n\nNumber of aperiodic processes to schedule:");
scanf 07.d",n);
printf ("\n");
for(i=0;i<*n;i++){ /* FOR EXPECTED # OF APERIODIC PROCESSES*/

one Aperiodic(i,&C[0] ,&T[0] ,&D[0]);

}

/***
* THE FOLLOWING FUNCTION RETURNS TO THE PROGRAM THE ALL THE *

* NAMES AND THE TASKS ATTRIBUTES WHEN THE USER DECIDES TO HAVE THEM *

* FROM A FILE. FIRST ASK THE USER FOR THE NAME OF THE FILE, THEN *

* OPENS THE FILE, READS THE ATTRIBUTES AS CHARACTERS AND THEN *

* CONVERTS THEM INTO FLOATING POINT NUMBERS. *

***/
void take_f rom_f ile(per_no,C,T,aper_no,C_ap,T_ap,D_ap)
int *per_no,*aper_no;
double *C,*T,*C ap,*T ap,*D ap;

{

char *name[15] ,*temp[5]
;

FILE *infile;
int i

;

printf ("\n\t Which file do you want to use ? :");

scanf ('"/.s" ,name)
;

if (infile = fopen (name, "r")) /* OPEN THE FILE FOR READING */
{

fscanf (infile, '"/.dXn", per.no); /* FIND # OF PERIODIC PROCESSES */
for(i=0;i<*per_no;i++){ /* READ ALL THE PERIODIC ATTRIBUTES */

f scanf (infile, ,,,
/.s

,

/.s
,
/.s\n",argl[i] ,Cchar[i] ,Tchar[i]);

C[i]=atof(Cchar[i]); /* CONVERT ATTRIBUTES INTO REAL # */
T[i]=atof(Tchar[i]);

}

f scanf (inf ile,'7.d\n", aper.no) ;/* FIND # OF APERIODIC PROCESSES*/
for(i=0;i<*aper_no;i++){ /* READ ALL THE APERIODIC ATTRIBUTES */

f scanf (infile, n,
/.s*/.s

,

/.s
,

/.s\n",arg2[i] ,Cchar_ap[i] ,

64

Tchar_ap[i] ,temp)
;

C_ap[i]=atof (Cchar_ap[i]) ;/* CONVERT ATTRIBUTES INTO REAL# */

•T.ap [1] =atof (Tchar.ap [1]) ;

D_ap [i] =atof (temp)

;

}

}

f close(inf ile)

;

* THIS FUNCTION PROVIDES THE OPTION TO THE USER TO SAVE THE TASK *

* SET NAMES WITH ALL THE ATTRIBUTES, AT THE EXIT, INTO A FILE *

* THE USER HAS ONLY TO SPECIFY THE FILE NAME IN WHICH THE SET WILL *

* BE SAVED. *

***/
void place_to_f ile(per_no , aper.no ,D_ap)

int *per_no ,*aper_no;
double *D_ap;

{

char *name [15] ,*temp[5]
;

FILE *outfile;
int i

;

printf ("\n\tFile to save the tasks in => :");

scanf ('"/.s" ,naine) ;

if (outfile = fopen(name,"v"))/* OPEN FILE FOR WRITING */

{

fprintf (outfile,'7.d\n" ,*per_no);/* WRITE # OF PERIODIC TASKS */
for(i=0;i<*per_no;i++){ /* WRITE ATTRIBUTES OF PERIODIC TASKS */

fprintf (outfile,'7.s '/.s y.s\n" ,argl [i] ,Cchar [i] ,Tchar [i]) ;

}

fprintf (outfile," ,

/.d\n
,, ,*aper_no);/* WRITE # OF PERIODIC TASKS */

for(i=0;i<*aper.no;i++){ /*WRITE ATTRIBUTES OF APERIODIC TASKS*/
fprintf (outfile, "V.s */.s */.s */.f \n" ,arg2[i] ,

Cchar_ap [i] ,Tchar_ap [i] , D_ap [1]) ;

}

}

fclose(outfile) ; /* CLOSE FILE */

* THIS FUNCTION IS EXECUTED WHEN THE USER SELECTS 2 IN THE MAIN *

* MENU. IT HAS INPUTS ALL THE TASK NAMES WITH THEIR ATTRIBUTES. *

* A CALL IN THE stop.screen FUNCTION PREVENTS THE OUTPUT FROM *

* DISAPPEARING ON THE VIDEO DISPLAY. *

void view.t asks (n , C ,T , aper.no , C_ap ,T_ap ,D_ap)
int n, aper.no;
double *C,*T,*C_ap,*T_ap,*D_ap;

int i;

65

void stop_screen()

;

printf ("\n\n\n\n\n\n\n\n\n")

;

printf (" PERIODIC PROCESSES \n")
;

printf ("\t\t NAME \t\tPERIOD\t EXECUTION TIME\n")

;

for(i=0;i<n;i++)
printf ("\t\t 1 7.10s 1 7.10 . If \t I 7.10 . If\t\t I \n" ,argl [i] ,T [i] , C [i])

;

printf (" \n\n\n")

;

printf (" APERIODIC PROCESSES
\n");

printf ("\t NAME \t\tPERIOD\t EXECUTION TIME VtRESPONSE
TIME\n")

;

f or(i=0; i<aper_no;i++)
printf ("\t|%10s|%10. If\t 17.10. If\t\t 17.10. If\t l\n",

arg2[i] ,T_ap[i] ,C_ap[i] ,D_ap[i]);
printf ("

\n\n»);
stop_screen()

;

* THIS FUNCTION ALLOWS THE USER THE CHANGE THE TASK ATTRIBUTES. *

* THE FUNCTION ASKS THE USER TO SPECIFY: IF HE WANTS TO CHANGE *

* PERIODIC OR APERIODIC PROCESS, AND THE NUMBER OF THE PROCESS THAT *

* HE WANTS TO CHANGE. THEN IT CALLS THE APPROPRIATE FUNCTION TO *

* HAVE THE NEW ATTRIBUTES. FINALLY MAKES SORTING TO THE PROCESSES. *

void change_parameters (per_no , C ,T , aper.no , C_ap , T_ap , D_ap)
int per_no,aper_no;
double *C,*T,*C_ap,*T ap,*D ap;

{

int n;

char job;

void one_periodic()

;

void one_Aperiodic()

;

void short _periodics()

;

void short_aperiodics()

;

job = menu (3); /* CHANGE PERIODIC OR APERIODIC ?? */
printf (" WHICH TASK DO YOU WANT TO CHANGE (number) =>: ")

;

scanf("7.d",&n);
printf ("\n");
switch (job){

case '1': /* IF PERIODIC */
if ((n<=per_no)&&(n>0)) {

/* GET ATTRIBUTES OF ONE PERIODIC TASK */
one_periodic(n-l,&T[0] ,&C[0])

;

short_periodics(per_no,&C[0] ,&T[0])

;

66

else printfC" THIS TASK DOES NOT EXISTS \n")
;

break;
case '2': /* IF APERIODIC */

if ((n<=aper_no)&&(n>0)) {

/* GET ATTRIBUTES OF ONE APERIODIC TASK */

one_Aperiodic(n-l,&C_ap[0] ,&T_ap[0] ,&D_ap[0])

;

short apenodics(aper_no,&C_ap[0] ,&T_ap[0] ,&D_ap[0])

;

}

else printfC THIS TASK DOES NOT EXISTS \n")
;

break;
default

:

prmtf("\n NOT a proper command! \n\n");

}
stop_screen()

;

* THIS FUNCTION TAKES FROM THE KEYBOARD THE NAME AND THE ATTRIBUTES *

* OF ONE PERIODIC PROCESS AT THE TIME. IT HAS AS INPUTS THE *

* POSITION IN THE ARRAYS AND THE ARRAYS THAT HAS TO FILL. *

* + ****+****4**+**4***** + ***** + ¥*************** + +** + **********'»*******/

void one_periodic(i ,T,C)

int i

;

double *C,*T;

{

printf ("\n\n\tEnter the name of the process # '/.d =>:",(i+l));
scanf 07.s",argl[i]);
printf ("\n\tEnter the period of process # */,d [ticks] =>:",(i + l));
scanf (" ,

/.s
,, ,Tchar[i]) ;

T[i]=atof (Tchar[i])
;

printf ("\n\tEnter the execution time of process #'/,d [ticks] => :

"

,

(i+D);
scanf 07.s" , Cchar [i]) ;

C[i]=atof (Cchar[i]) ;

* THIS FUNCTION TAKES FROM THE KEYBOARD THE NAME AND THE ATTRIBUTES *

* OF ONE APERIODIC PROCESS AT THE TIME. IT HAS AS INPUTS THE *

* POSITION IN THE ARRAYS, AND THE ARRAYS THAT HAS TO FILL. *

void one_Aperiodic(i ,C,T,D)
int i

;

double *C,*T,*D;
{

printf ("\n\n\tEnter the name of the process # '/.d =>:",(i+l));
scanf 07.s",arg2[i]);
printf ("\n\tEnter the average period of process # '/.d [ticks]=>:",

(i+D);
scanf C7.s" ,Tchar_ap [i]) ;

67

T[i]=atof (Tchar_ap[i]) ;

printf ("\n\tEnter the execution time [ticks] =>:");

scanf (
,,*/.s",Cchar_ap[i3);

C[i]=atof (Cchar_ap[i]) ;

printf ("\n\tEnter the max responce time of process #*/.d [ticks] =>:"

,

(i+D);
scanf 07.F",&D[i]);

* THIS FUNCTION CALLS ALL THE REQUIRED FUNCTIONS IN ORDER TO MAKE *

* SCHEDULABILITY ANALYSIS. IT ALSO CALLS THE FUNCTION THAT RETURNS *

* THE PRIORITIES THAT WILL BE ASSIGNED IF THE USER DECIDES TO RUN *

* THE SET OF TASKS. *

void make_sched_analysis(C,T,n,C_ap,T_ap,D_ap,
aper.no ,process_pri ,tot_T,tot_C)

int *process_pri ,*n,aper_no

;

double *C,*T,*C ap,*T_ap,*D_ap,*tot_T,*tot_C;
{

int i , count ,LCM, check;
double per_util;
double sched.pt [SIZE*2] ,Lint [SIZE]

;

void create_total_array()

;

void f ind_Wi()

;

void f ind_Li()

;

void f ind_min_Li()

;

int f ind_if _schedulable()

;

int least_common_mult ()

;

void check_aper()

;

void assign_priorities()

;

/* CREATE AN ARRAY IN WHICH BOTH PERIODIC AND
APERIODIC PROCESSES WILL BE PLACED */

create_total_array(n,&C[0] ,&T[0] , &tot_C[0] ,&tot_T[0])
;

/* CREATE ALL THE INFOS NEEDED FOR THE PERIODIC ANALYSIS */
count=f ind_sched_points(&T[0] ,&sched_pt [0] ,*n)

;

find_Wi(&C[0] ,&T[0] ,&sched_pt [0] ,*n, count);
f ind_Li(&sched_pt [0] ,*n, count)

;

f ind_min_Li(&Lint [0] ,*n, count)

;

/* WITH THOSE INFOS FIND IF PERIODIC PROCESSES ARE SCHEDULABLE */
check=f ind_if_schedulable(&per_util,&Lint[0] ,&C[0] ,&T[0] ,*n)

;

/* FIND LEAST COMMON MULTIPLIER OF PERIODIC PROCESSES PERIODS */
LCM=least_common_mult(&T[0] ,*n)

;

/* IF PERIODIC SET SCHEDULABLE MAKE SCHEDULABILITY ANALYSIS FOR THE
APERIODIC SET AND PLACE THE APERIODIC TASKS IN THE COMMON ARRAYS*/

if (check == TRUE) check_aper(LCM,per_util,&tot_C[0] ,&tot_T[0]

,

&C_ap[0] ,&T_ap[0] ,&D_ap[0] ,n, aper.no) ;

/* FIND THE PRIORITIES THAT WILL BE ASSIGNED*/

68

assign priorities (&tot T[0] ,&tot C[0] ,&process_pri [0] ,LCM,*n)

;

}

/***
* THIS FUNCTION CREATES ARRAYS WITH ELEMENTS ALL THE PERIODIC NAMES *

* AND ATTRIBUTES. LATER IN THOSE ARRAYS WILL BE PLACED THE *

* APERIODIC NAMES AND ATTRIBUTES. *

********************+**/
void create.total.array (per.no, C,T,tot_C, tot _T)
int *per_no;
double *C,*T,*tot T,*tot C;

{

int i;

for(i=0;i<*per.no;i++){ /* FOR # OF PERIODIC PROCESSES */
tot_T[i]=T[i]

;

tot_C[i]=C[i]

;

strcpy (name[i] ,argl [i])

;

strcpy (tot .Tchar [1] ,Tchar [i])

;

strcpy (tot_Cchar [1] ,Cchar [i])

;

/***** **
* THE FUNCTIONS: f ind_sched_points() , find_Wi(), f ind_min_Li() , *

* find_Li() and find.if _schedulable() ARE NEEDED FOR SCHEDULABILITY *

* ANALYSIS OF THE PERIODIC PROCESSES. ALL OF THEM ARE PART OF THE *

* rate.mono PROGRAM IN Ref.[Le9l]. ONLY MINOR MODIFICATIONS HAVE *

* BEEN DONE AND THEY HAVE BEEN SEPARATED TO FORM MODULAR FUNCTIONS.*
* FOR THAT REASON THEY HAVE BEEN LEFT WITHOUT COMMENTS. *
********* + ********************.***************************************/

int f ind_sched_points (T, sched.pt ,n)

double *T,*sched_pt

;

int n;

{

int i ,j ,k,p, flag, count

;

double S;

count=0;
for(i=0;i<n;i++){

for(j=0;j<=i;j++){
for(k=l;k<=floor(T[i]/T[j]);k++){

flag=0;
S=k*T[j];
for(p=l ;p<count ;p++){

if(S==sched pt [p]

)

flag=l;
}

if(flag==0){
sched.pt [count] =S

;

69

count++;
}

}

}

}

return (count)

;

}

void find_Wi(C,T, sched.pt ,n, count)
double *C,*T,*sched_pt;
int n, count;

{

int i,j,t;
double terml;

terml=0;
for(i=0;i<n;i++){

for(t=0;t<count;t++){
for(j=0;j<i;j++){

terml=terml+C [
j] *ceil (sched.pt [t] /T [j])

;

}

W[i] [t]=terml;
terml=0

;

}

}

}

void find_Li(sched_pt,n, count)
double *sched_pt;
int n, count;

{

int i,t;

for(i=0;i<n;i++){
for(t=0;t<count;t++){

Li [1] [t] = (W [1] [t] /sched.pt [t]) ;

}

>

void find_min_Li (Lint, n, count)
double *Lint;
int n, count;

{

int i,t;

for(i=0;i<n;i++) Lint [i] =10000;
for(i=0;i<n;i++){

for(t=0;t<count;t++){
if (Li[i] [t]<Lint[i])

70

Lint[i]=Li[i] [t]
;

}

}

}

int f ind.if _schedulable(per_util ,Lint ,C,T,n)
double *Lint , *C,*T,*per_util;
int n;

{

int i, check;
double L,U;

L=0;
for(i=0;i<n;i++){

if (Lint[i]>L)
L=Lint [i]

;

}

U=0;
for(i=0;i<n;i++) U=U+C[i] /T[i]

;

*per_util=U;
if((L<=l) & (U<=1)){

printf ("\tPeriodic process set SCHEDULABLE.\n\n")

;

check=TRUE;
}

if((L>l)||(U>l)){
printf ("\tPeriodic Process set NOT schedulable\n\n")

;

check=N0

;

}

printf ("\tRemaining processor time for aperiodics : '/, .2f",

(1-U)*100);
printf (" percent \n\n")

;

stop_screen()

;

return(check)

;

* THE FOLLOWING FUNCTION COMPUTES THE LEAST COMMON MULTIPLE OF THE *

* PERIODIC PROCESSES PERIODS. THE PERIODS ARE INSERTED IN A *

* TEMPORARY ARRAY. BY DIVIDING THE ARRAY ELEMENTS WITH ALL THE *

* INTEGERS FROM 1 TILL MAX PERIOD AND BY LOOKING WHEN THIS DIVISION *

* IS EXACT WE CAN FIND THE LCM. *

*********** + **+*** + ** ++++ ***+* + * +++ *** +++++ * +++++ **+*****************/
int least _common_mult (T,n)
double *T;

int n;

{

int i, j ,1, flag, temp;
int temp_period[SIZE]

;

for(l=0;Kn;l++) temp_period[l]=T[l] ;/* CREATE TEMPORARY ARRAY */

71

temp=l; /* temp = LCM */
for(i=2;i<=T[0] ;){ /* fOR ALL INTEGERS UNTIL T MAX */

flag=0;
for(j=0;j<n;j++){ /* FOR ALL ELEMENTS FOR THAT INTEGER */

if ((temp_period[j]/i)*i == temp_period[j]){
/* CHECK IF ANY ELEMENT DIVISIBLE */

temp_period[j]=temp_period[j] /i;

flag=l; /* IF YES DIVIDE AND KEEP THE INTEGER */

}

}

if (flag == 1) temp=temp*i;/* MULTIMPLY LCM BY THE INTEGER */

else i++;

}

return (temp)

;

* THIS FUNCTION FINDS IF THE TASK SET TOGETHER WITH THE APERIODIC *

* PROCESSES IS SCHEDULABLE. FIRST CHECKS THE TOTAL PROCESSOR UTILIZA-*
* TION. IF IS > 1.0 EXITS THE FUNCTION. IF IT IS NOT, CHECK IF THE *

* APERIODIC TIMING REQUIREMENTS CAN BE SATISFIED. EITHER WAY CONTI- *

* NUES. THEN FOR EVERY APERIODIC PROCESS TRIES TO FIND THE OPTIMUM *

* AMONG THE OTHER PROCESSES POSITION. ACCORDING TO THAT THE *

* PRIORITIES WILL BE ASSIGNED, AND PLACES THE PROCESS THERE. *

void check. aper (LCM, per_util,C,T,C_ap,T_ap,D_ap,n,aper_no)
double per.ut il , *C , *T , *C_ap , *T_ap , *D_ap

;

int LCM,*n,aper no;

{

double U,min_D,total_laxity

;

int i
, j , a, b, place;

char buffer [5]

;

int look_blocking()

;

int f ind_place_for_aperiodic()

;

double f ind_total_laxity()

;

void place_aperiodic()

;

U=0;
/* FIND APERIODIC PROCESSOR UTILIZATION */

for(i=0;i<aper_no;i++) U=U+C_ap[i]/T_ap[i]

;

if ((per_util+U)<=l) { /* IF TOTAL PROCESSOR UTILIZATION < 1.0 */
printf ("\tTotal process set with aperiodics SCHEDULABLE\n\n")

;

/* CHECK IF APERIODIC TIMING REQUIREMENTS CAN BE SATISFIED */
if ((place=look_blocking(aper_no,&C_ap[0] ,&D_ap[0])) != -1){

/* IF THEY CANNOT PRINT */
printf ("YtBut responce time of */.s process" ,arg2 [place]) ;

printf (" may NOT be acheived\n\n")

;

}

for(i=0;i<aper_no;i++){/* FOR ALL THE APERIODIC PROCESSES */
/* FIND LAXITY OF COMBINED PROCESS */

72

total_laxity=find_total_laxity(i, aper.no, &C_ap[0] ,&D_ap[0])

;

f or(j = i ;
j<aper_no; j++){/* find min resp . time for conbmed */

a=D_ap[j] ;

b=min_D;
if(a<b) min_D=D_ap[j]

;

} /* FIND PLACE IN THE ARRAY FOR COMBINED APERIODIC */

place=f ind_place_f or_aperiodic(min_D,£C[0] ,&T[0]

,

total.laxity ,*n,place+l)

;

/* PLACE APERIODIC IN THAT POSITION */

place_aperiodic(*n, place, i,ftC[0] ,&T[0] ,&C_ap[0] ,&T_ap[0]) ;

*n=*n+l; /* LOWEST POSITION NEXT APERIODIC CAN BE PLACED */

}

/* THIS IS FOR USER INFORMATION */

printf("\tDo you want to see the whole set (y,n)? \n\n");
readln(0 .buffer, 2)

;

if ((buffer [0] ==
'

y
') I I buffer [0] == '

Y
')

{

prmtf ("\t\t NAME \t\tPERIOD\t EXECUTION TIME\n")
;

for(i=0;i<*n;i++) printf ("\t\t T/.lOs T/.10. If \t T/.10 . If \t\t |\n" ,

name[i] ,T[i] ,C[i]);

}

}

else{ /* IF TOTAL PROCESSOR UTILIZATION > 1.0 */

printf ("YtTotal set NOT schedulable\n\n")

;

prmtf ("\tThe set exceeds processor time by : '/, .2f percent\n\n"

,

(U+per util-l)*100)

;

}

stop screenO;
}

/***+*************************
* THIS FUNCTION COMPUTES THE TOTAL LAXITY (MIN. RESPONSE TIME - SUM *

* OF EXECUTIONS) OF THE COMBINED APERIODIC PROCESS *

double find_total_laxity (base, aper.no, C_ap,D_ap)
int base,aper_no

;

double *C ap,*D ap;

{
int j ,a,b;
double min_D,sum_C;

sum_C=0.0;
min_D=100000.0; /* JUST A BIG NUMBER */
for(j=base;j<aper.no;j++){/* FOR APERIODICS THAT HAVEN'T CHECKED */

a=D_ap[j]
;

b=min_D; /* FIND MINIMUM RESPONSE TIME */
if(a<b) min_D=D_ap[j]

;

sum_C=sum_C+C_ap[j] ; /* COMPUTE SUM OF EXECUTION TIMES */

} /* RETURN TOTAL LAXITY IF > */
if ((a=(min_D-sum_C))>0) return(min_D-sum_C)

;

else return(O.O); /* RETURN */

73

* THIS FUNCTION FINDS IF THE APERIODIC SET CAN MEET ITS TIMING *

* REQUIREMENTS. IF THE SUM OF THE EXECUTION TIMES OF THE PROCESSES *

* WITH HIGHER TIMING REQUIREMENTS IS GREATER THAN THE RESPONSE TIME *

* OF A PROCESS i THEN THE PROCESS i MAY NOT MEET ITS RESPONSE TIME *

* WHEN ALL START SIMULTANEOUSLY. IN THAT CASE THE PROGRAM RETURN *

* THE NUMBER OF THE i PROCESS. OTHERWISE RETURNS -1 *

***/

int look_blocking(aper_no,C_ap,D_ap)
int aper_no;
double *C ap,*D_ap;
{

int i,j,a;
double sum_C;

for(i=aper_no-l;i>0;i—){/* FOR ALL THE APERIODIC PROCESSES */
sum_C=0.0;

/* FIND SUM OF THE EXECUTIONS TIMES FOR
PROCESSES WITH LOWER LAXITY */

for(j=0; j<i; j++) sum_C=sum_C+C_ap[j]

;

a=D_ap [i] -C_ap [i] -sum_C

;

if(a<0) return(i); /* IF RESPONSE TIME SMALLER THAN THE SUM
RETURN THE NUMBER OF THE PROCESS */

}

return(-l); /* ELSE RETURN -1 */

* THIS PROCESS COMPUTES THE PRIORITIES THAT WILL ASSIGNED TO THE *

* PROCESSES IF THE USER DECIDES TO RUN THE SET. THE CODE IS FROM *

* rate.mono PROGRAM in Ref.[Le91] WITH THE MODIFICATION THAT IT HAS *

* BECOME A FUNCTION AND INSTEAD OF GIVING AS INPUT ONLY THE PERIODIC*
* PROCESSES, THE COMBINED ARRAY OF PROCESSES IS PROVIDES. FOR THAT *

* REASON THE COMMENTS HAVE BEEN OMITTED. *

+**********/
void assign_priorities(T,C,process_pri,LCM,n)
double *T,*C;
int *process_pri

;

int LCM,n;

{

double temp, tempi, temp2;
int i,j,k,l;

process.pri [0] =MAX_PRIORITY

;

temp=l

;

templ=0;
temp2=l

;

for(i=l;i<n;i++){

74

for(j=0; j<=(i-l)
;
j++) temp2=temp2*T[j]

;

for(k=0;k<=(i-l);k++){
for(l=0;K=(i-l);l++){
if(l!=k) temp=temp*T[l]

;

}

templ=templ+C[k] *temp;
temp=l

;

}

process_pri [i]=process_pri [0]-ceil(LCM*(templ/temp2)*5*i)

;

temp 1 = ;

temp2=l

;

>

templ=0;
for(i=0;i<n;i++){

if(T[i]>templ)
templ=T[i]

;

}

for(i=l ; i<n; i++) process.pri [i]=process_pri [0] -(i*templ)

;

/***********+*»* + *****-***************** + ****** + ***********************
* THIS FUNCTION INSERT THE NAME AND THE ATTRIBUTES OF AN APERIODIC *

* PROCESS IN THE ARRAYS THAT CONTAINS BOTH PERIODIC AND APERIODIC *

* PROCESSES. THIS IS DONE BY MOVING ALL THE ELEMENTS THAT ARE BELOW *

* THE SPECIFIED POSITION ONE STEP DOWN AND THEN INSERTING THE NEW *

* ELEMENTS

.

*

+*********+************/
void place_aperiodic(n, place, aper ,C,T,C_ap,T_ap)
double *C,*T,*C_ap,*T_ap;
int n, place, aper

;

{

int i;

for(i=n;i>place;i—){/* MOVE ELEMENTS BELOW place ONE STEP DOWN */
strcpy(name[i] ,name[i-l]) ;

C[i]=C[i-l];
T[i]=T[i-l];
strcpy(tot_Cchar[i] ,tot_Cchar[i-l])

;

strcpy (tot_Tchar[i] ,tot_Tchar[i-l])

;

} /* INSERT NEW ELEMENTS */
strcpy (name [place] , arg2 [aper])

;

strcpy (tot_Cchar [place] , Cchar.ap [aper])

;

strcpy (t ot_Tchar [place] , Tchar.ap [aper])

;

C [place] =C_ap [aper]

;

T [place] =T_ap [aper]

;

75

* THIS FUNCTION FINDS THE BEST POSITION FOR A COMBINED APERIODIC *

* PROCESS TO HAVE ITS PRIORITY. STARTS LOOKING IF THE RESPONSE TIME *

* CAN BE ACHIEVED BY GIVING THE LOWEST PRIORITY. IF NOT IS GOING *

* POSITION LOWER. IT CANNOT GO LOWER THAN THE LAST ASSIGNED PRIO- *

* RITY. THAT IS FOR THE CASE THE APERIODIC PROCESSES CANNOT *

* ACCOMPLISH THE REQUIRED RESPONSE TIME BUT THE USER STILL WANTS TO *

* RUN THE SET. *

»****+****+**********+***/

int f ind_place_for_ aperiodic (minD,C,T, Delay ,n, last)
double *C,*T,minD, Delay;
int n,last;
{

int i

;

double U;

U=0;
/* FIND WORST CASE PROCESSOR UTILIZATION DURING RESPONSE TIME*/

for(i=0;i<n;i++) U=U+ceil(minD/T[i])*C[i]

;

while ((Delay<(U)) && (n>last)){ /* WHILE TIME NEEDED FOR OTHER
PROCESSES GREATER THAN RESPONSE TIME */

n—

;

/* GO ONE POSITION LOWER */
U=0; /* FIND PROCESSOR UTILIZATION WITH ONE PROCESS LESS */
for(i=0;i<n;i++) U=U+ceil(minD/T[i])*C[i]

;

}

return(n); /* RETURN THE OPTIMUM POSITION */

* THIS FUNCTION FIRST CALLS THE TASK THAT CREATE ALL THE PIPES. *

* THEN SAVES SOME STATISTISTICAL INFORMATION IN A FILE FOR LATER *

* USER ANALYSIS. THEN CREATES ALL THE TASKS. *

* THEN SENDS SIGNALS TO ALL OF THEM TO START EXECUTION FINALLY *

* WAITS FOR PROCESSES TO FINISH EXECUTION AND CLOSES THE PIPES. *

^*^****/
void run.set (C,T,process_pri

,
parent ,n)

int *process_pri ,n;

double *C,*T;
procid *parent

;

{

FILE *file;
int pid,pipes_id,prid[SIZE]

;

int create_pipes()

;

void save_priorities()

;

void fork_the_processes()

;

void start_processes()

;

void receive_send_kill()

;

pid=getpid(); /* GET PROCESS ID */

76

pipes_id=create_pipes() ; /* CREATE ALL THE PIPES */

if(file=fopen("statist", "w"))/* SAVE IN FILE ASSIGNED PRIORIT.*/
save_priorities(f ile,&C[0] ,&T[0] ,&process_pn [0] ,n)

;

else
printf ("\tcannot open */,s to save priority inf o\n\n" , "statist") ;

/* CREATE ALL THE TASKS */

fork_the_processes(&process_pri [0] ,&prid[0] .parent ,n)

;

f close(f lie)

;

start_processes(&prid[0] ,n);/* START EXECUTION OF TASKS */
receive_send_kill(pipes_id,*parent ,n)

;

/* WAIT FOR TASK TO END AND CLOSE ALL THE PIPES */

* THIS FUNCTION IT JUST SAVES THE TASKS PRIORITIES AND SOME OF THE *

* TASKS ATTRIBUTES IN A FILE FOR LATER ANALYSIS. *

void save_priorities(f ile,C,T,process_pri ,n)

FILE *file;
double *C,*T;
int *process pri.n;

{

int i

;

fprintf (f ile,
"process# \t name \texec. time\t period \tpriority\n")

;

for(i=0;i<n;i++){
fprintf (file,

"7.6d \t7.6s \t'/.9.1f \t
#

/.5.1f \t7. 7.8d\n",(i+l) ,name[i]
,

C[i] ,T[i] ,process_pri[i])
;

}

fprintf (file, "\n\n");

* THIS FUNCTION FORKS THE PROCESS pipes. c THAT CREATES ALL THE PIPES*
* AND THEN IT FORKS THE FUNCTION start. c THAT GIVES INITIAL VALUES *

* IN SOME OF THE PIPES SO THE AUV-II CAN START EXECUTION *

^*^^*****^^** *** *****/
int create_pipes()
{

int pipes_id,start_id;

if ((pipes_id=os9exec(os9forkc,arg4[0] ,arg4, environ, 0,6 1000, 15))<0)
{ /* FORK pipes. c TASK */

fprintf (stderr, "Cannot fork 7.s \n" , "pipes")
;

exit (errno)

;

}

pauseQ; /* WAIT FOR pipes. c TO FINISH EXECUTION */
if ((start _id=os9exec(os9forkc,arg3[0] ,arg3, environ, 0,6 1000, 15))<0)

{ /* FORK start. c TASK */

77

fprintf (stderr , "Cannot fork '/,s \n" , "start") ;

exit(errno)

;

}

return(pipes_id)

;

}

/**»******
* THIS FUNCTION FORKS ALL THE PROCESSES IN THE DATA-FLOW DIAGRAM. *

* THE ARGUMENTS THAT ARE PASSED ON THOSES PROCESSES ARE THEIR NAMES,*
* THEIR EXECUTION TIMES C, AND THEIR PERIODS T. THE PRIORITIES ARE *

* THOSE THAT HAVE ALREADY BEEN COMPUTED. AFTER EACH FORKING THE *

* PROGRAM SUSPENDS ITSELF UNTIL THE PROCESS FINISHES INITIALIZATION.*
****»»***/
void fork_the_processes(process_pri ,prid, parent ,n)

int *process_pri,*prid,n;
procid *parent;
{

int i ,pid,token_id;
char *lalal[4];

lalal[0]=(char *)malloc(15)

;

lalal [l]=(char *)malloc(5)

;

lalal [2]=(char *)malloc(5);
lalal[3]=NULL;
pid=getpid()

;

for(i=0;i<n;i++){ /* FOR ALL THE PROCESSES */
strcpy(lalal[0] ,name[i]) ;/* COPY THE ARGUMENTS IN TEMP. ARRAY */
strcpy (lalal [l] ,tot_Cchar [i])

;

strcpy(lalal[2] ,tot_Tchar [i]) ;

/* FORK THE PROCESSES */
if ((prid [i]=os9exec(os9forkc, lalal [0] , lalal , environ, 0,

process_pri[i] ,15))<0)

fprintf (stderr, "Cannot fork '/,s \n" ,argl [i]) ;

exit (errno)

;

}

pause (); /* WAIT FOR PROCESS TO BE INITIALIZED */
}

* THIS FUNCTION IS WAITING FOR ALL THE PROCESSES IN THE DATA-FLOW *

* DIAGRAM TO FINISH EXECUTION. THEN IT SENDS A SIGNAL IN THE PROCESS*
* pipes. c THAT CREATED ALL THE PIPES TO FINISH EXECUTION. *
***/
void receive_send_kill (pipes.id, parent ,n)
int pipes_id,n;
procid parent;
{

intkillerr, i;

78

for(i=0;i<n;i++) pauseQ;/* WAIT ALL THE PROCESS TO FINISH */
if ((killerr=kill(pipes_id,SIGWAKE)) == -1) fprintf (stderr,

cannot wakeup pipes, c in '/,s , error No ='/,d\n" , "sched.c" ,errno)

;

} /* SIGNAL pipes. c TO FINISH EXECUTION */

* AFTER THE INITIALIZATION EACH PROCESS IN THE DATA-FLOW DIAGRAM *

* SUSPEND ITSELF. THIS FUNCTION SENDS KILL SIGNALS IN ALL THE *

* PROCESSES SO THEY CAN START SIMULTANEOUSLY THE EXECUTION OF THEIR *

* MAIN LOOPS. *

void start_processes(prid,n)
int *prid,n;

{

int killerr.i;

for(i=0;i<n;i++){
if ((killerr=kill(prid[i] ,SIGWAKE)) == -1) fprintf (stderr,

"Cannot wakeup process # '/,d in '/.s, error No =*/,d\n",

prid[i] , "sched.c" ,errno)

;

}

* THIS FUNCTION IS BEING CALLED WHEN THE USER DECIDES TO EXIT THE *

* SCHEDULER. FIRST PROVIDES THE OPTION TO THE USER TO SAVE THE TASKS*
* SET. THEN RELEASES ALL THE MEMORY THAT HAS BEEN USED WITH malloc. *

* THEN IT SENDS A SIGNAL TO THE PARENT PROCESS (newss.c) TO FINISH *

* EXECUTION AND THEN IT EXITS. *

**
void my_end(n,aper_no,D_ap, parent)
int n,aper_no;
double *D_ap;
procid parent;
{

char bufer[5]

;

void place_to_f ile()

;

void return_memory ()

;

void parent„kill()

;

printf("\tDo you want to save the tasks in file (y,n) ?\n")

;

readln(0,bufer,2); /* OPTION IN USER TO SAVE THE SET */
printf ("\n");
if ((bufer[0]=='y') I I (bufer[0]=='Y'))

place_to_f ile(&n,&aper_no,&D_ap[0])

;

return_memory(); /* RELEASE THE USED WITH malloc MEMORY */
parent.kill (parent); /* KILL THE START SCHEDULER (newss.c) */
exit () ;

7!)

* THIS FUNCTION SENDS A SIGNAL TO newss.c TO FINISH EXECUTION *

void parent _kill (parent)
procid parent;

{

int killerr;

>

if ((killerr=kill (parent. _pid,SIGWAKE)) == -1) fprintf (stderr

,

"Cannot wakeup newss.c in '/.s, error No ='/.d\n" , "sched.c",errno)
;

* THIS FUNCTION IS BEING CALLED AFTER EVERY SCHEDULER OUTPUT SO IT *

* WILL STOP THE SCROLLING OF THE SCREEN. *

***/

void stop_screen()
{

char hit [10];

printf ("\n\t Hit RETURN to continue. \n ")

;

readln(0 ,hit , 1)

;

printf("\n\n");
}

* THIS FUNCTION RELEASES ALL THE MEMORY ALLOCATIONS BEFORE EXIT *

void return memoryO
{

int i;

for(i=0;i<SIZE;i++){ /* FOR MAX EXPECTED # OF PROCESSES */
free(argl [i]

)

free(arg2[i])
free(name[i])

free(Cchar [i]) ;

free(Cchar_ap [i]) ;

free(tot_Cchar [i]) ;

free(Tchar [i]) ;

free (Tchar_ap [i]) ;

free(tot_Tchar [i])

;

}

80

* Program
* Purpose
* Author
* Description

APPENDIX C: CODE FOR CALLED
PROCESSES

/***
GUIDANCE.

C

*

CODE FOR CALLED PROCESSES. *

LTJG D. MAKRIS H.N. *

THIS IS GENERIC DUMMY PROCESS BEING USED TO VERIFY *

* THE RESULTS OF THE SCHEDULER. THIS PROCESS HAS AS *

* INPUT THE PERIOD OF THE PROCESS THIS PROSSES USES *

* THE FUNCTION "get.timing.inf o" WHICH RETURNS THE *

* TIME THAT THE FUNCTION WAS CALLED. THE OUTPUT OF *

* THIS PROCESS IS IN THE FILE "out3" WHERE TIMIMG *

* INFORMATION IS WRITEN. *

* THE TIMING PROCESS DIFFERS ONLY IN THE DELAY. IT *

* HAS A TIMING SLEEP EQUAL TO THE PERIOD. *

* THE INITIALIZATION PROCESS IS ALSO SIMILAR. THE *

* DIFERENCE IS THAT THERE IS NOT MAIN LOOP. *

#include <stdio.h>
#mclude <errno.h>
#include <modes.h>
#include <signal.h>
#include <procid.h>

#define NUMBER 4
#def ine STATISTICS "out3" /* OUTPUT FILE */

#define STAT.INFO.DELAY 394 /* DELAY OF THE PROGRAM */

#def ine LOOP 3160 /* TIME OF ONE TICK */

#define TRUE 1

•define RUN 50 /* EXPECTED TIMES TO RUN */

char *names [] = {"/PIPE/current_posture" , "/PIPE/emergency_posture"

,

"/PIPE/ref erence_postures" , "/PIPE/commanded_postures" ,0,};

extern int exit () ,pause() ,getpid() ,_get_process_desc() ,kill()

;

char *outbuffer [10] ={"3a" , "3b" , "3c" , "3d" , "3e"

,

"3i","3g","3h","3i","3j"};

icpthand(signum)
int signum;

{

/* INTERCEPT HANDLER */

fprintf (stderr ,"I received in guidance, c signal '/.d\n" , signum) ;

81

main(argc,argv)
int argc

;

char *argv[]
;

{

int pipes [NUMBER]

;

FILE *statfile;
char buffer [10];

int delay ,i, j , count ,killerr,pdata;
period, readerr .WriteLength;

int time_start[RUN] , time.stop [RUN]

,

tick. st art [RUN] ,tick_stop[RUN]

;

short int parent id;

unsigned final.sleep;

void get.timing.inf o() ;

short int get_parent_id()

;

intercept (icpthand)

;

i=j=0;
count = 0; /*0PEN THE FILE FOR THE RESULTS */
statfile = fopen(STATISTICS,"a");

while(names[i] !=NULL){
if((pipes[i] = open (names [i] ,S_IREAD+S_IWRITE)) == -1){

fprintf (stderr

,

"\tThe '/,s is not opening in */,s for writing \n",
names [i] ,argv[0]) ;

exit (errno)

;

} /*0PEN THE PIPE FOR WRITING */
i++;

}

delay = L00P*atoi(argv[l])-STAT_INFO_DELAY;
/CALCULATE THE DELAY ACCORDING TO THE EXEC. TIME IN TICKS*/

parent id = get_parent_id(argv[0])

;

/* WAKE UP sched.c */
if ((killerr=kill(parentid,SIGWAKE)) == -1)

fprintf (stderr ."Cannot wakeup rm.c in */,s , error No =*/,d\n" ,

argv[0] , errno)
;

pause(); /* WAIT FOR ALL PROCESSES TO START TOGETHER */

while (j<RUN-l)
-C

get.timing.inf o(&time_start[j] ,&tick_start [j]) ;

/* READ PIPE FROM PERIODIC PROCESS */
if((readerr = readln(pipes[0] .buffer, 10)) == -1)

fprintf (stderr, "cannot read */,s,in '/.s, error number '/,d\n",

names [0] ,argv[0] , errno)
;

/* READ PIPE FROM APERIODIC PROCESS */
if ((pdata = _gs_rdy(pipes[l])) > 1){

if((readerr = readln(pipes[l] , buffer, 10)) == -1)

82

fprintf (stderr, "cannot read */,s,in */.s, error number */.d\n"
,

names [l] ,argv[0] ,errno) ;

}

/* READ PIPE FROM PERIODIC PROCESS */

if((readerr = readln(pipes [2] , buffer , 10)) == -1)

fprintf (stderr ."cannot read '/,s,in '/,s, error number '/.d\n"
,

names [2] ,argv[0] ,errno)

;

for(i=l;i<delay;i++); /* INSTEAD OF THE REAL PROGRAM */

/* WRITE IN PIPE */

if ((WriteLength = writeln(pipes[3] .outbuffer [count'/.lO] , 10)) < 0)

fprintf (stderr ."cannot write in 7,s,in */,s, error No */,d\n" ,

names [3] ,argv[0] ,errno)
;

get_timing_info(&time_stop[j] ,&tick_stop[j])

;

}

for(j=0;j<RUN-l;j++){ /* THIS IS ONLY FOR EXPERIMENT PURPOSES */

fseek(statfile,0,2) ; /* FIND THE END OF THE out3 FILE */

fprintf (st atfile,
'7,s for\t '/.d time, time:'/.6d-y.6d, ticks y.6d-y.6d \n"

,

argv[0]
, j ,time_start [j] ,time_stop[j] ,tick_start [j] ,

tick_stop[j])

;

} /* SAVE THE TIMING INFORMATION */
/* SIGNAL sched.c THAT FINISH EXECUTION */

if ((killerr=kill(parentid,SIGWAKE)) == -1)

fprintf (stderr /'Cannot wakeup rm.c in '/,s, error No ='/,d\n"

,

argv[0] ,errno)

;

exit(O)

;

* THIS FUNCTION ACCESSES THE SYSTEM CLOCK AND RETURNS THE TIME AND *

* THE TICK. *

void get_timing_inf o(ret _time, ret _tick)
int *ret time,*ret tick;

{

int date, time, tick, mask;
short day;
mask =0x0000ffff;

_sysdate(3,&time,&date,&day ,&tick)

;

*ret_tick=(tick & mask)

;

*ret_time=time;

S3

* THIS FUNCTION RETURNS THE PROCESS I.D. OF THE sched.c. THE *

* ARGUMENT NAME IS ONLY FOR ERROR HANDLING. *

+****+*********+**************+*******************+**************/

short int get_parent_id(name)
char *name;

{

int gpiderr;
short int pid;
procid parent;

if ((pid = getpidO) == -1)/* TAKE THE PROCESS I.D. */
fprintf (stderr , "Cannot get Process ID in */,s, error No= '/,d\n"

,

name,errno)

;

/* TAKE THE PARENTS (sched.c) I.D. */
if ((gpiderr - _get_process_desc(pid,sizeof (parent) ,&parent)) == -1)

fprintf (stderr

,

"Cannot get Process Descriptor in '/.s, error No= 7,d\n"

,

name,errno)

;

return (parent. _pid); /* RETURN THE PARENTS I.D. */

84

* Program
* Purpose
* Author
* Description

<stdio

.

h>

<errno. h>

<modes

.

h>
<signal .h>

<procid .h>

MAXSIZE 20
NUMBER 16

APPENDIX D: CODE CREATING THE PIPES

PIPES.

C

*

MAIN CODE PROCESS THAT CREATES PIPES. *

LTJG D. MAKRIS H.N. *

THIS PROGRAM CREATES ALL THE PIPES THAT WILL BE *

* USED FOR THE PROCESS COMMUNICATION. AFTER THE *

* CREATION THE PROGRAMM REMAINS IDLE UNTIL THE SET *

* FINISHES. OTHERWISE PIPES WILL CLOSE. *

#include
#mclude
#include
#include
#include

#def ine
#def ine

/* DEFINE ALL THE PIPES */

char *names[] = {"/PIPE/token_pipe" , "/PIPE/commanded.postures"

,

,7PIPE/slgnals ,V7PIPE/positions ,,

,

"/PIPE/current_posture" , "/PIPE/emergency_posture"

,

"/PIPE/inertial.data" , "/PIPE/obstacle.alert"

,

"/PIPE/alert" , "/PIPE/path"

,

"/PIPE/range_data" , "/PIPE/reference.postures"

,

"/PIPE/replan_request" , "/PIPE/sonar_data"

,

"/PIPE/status" , "/PIPE/systems_status" ,0 ,}

;

extern int exit () ,pause() ,getpid() ,_get_process_desc()

,

kill() ,intercept()

;

icpthand(signum)
int signum;

{

/* INTERCEPT HANDLER */
fprintf (stderr , "I received signal in pipes, c : y.d\n" , signum) ;

}

main(argc,argv)
int argc;
char *argv[]

;

{

FILE *pipes [NUMBER]

;

int killerr.i;
short int parent id;

85

short int get_parent_id()

;

intercept (icpthand)

;

i-0;
while (names [i] !=NULL){ /* OPEN ALL THE PIPES LIKE FILES */

if((pipes[i] = f open (names [i] ,"w")) == NULL){
fprintf (stderr, "Cannot open */,s. Error '/.d \n\n ",

names [i] , errno)

;

exit(errno)

;

}

i++;

}

parent id = get_parent_id(argv[0]) ;/* FIND PARENTS I.D.
CODE HAS DEFINED IN APPEMDIX C */

/* SIGNAL sched.c THAT INITIALIZATION FINISHED */
if ((killerr = kill (parent id, SIGWAKE)) == -1)

fprintf (stderr /'Cannot wakeup rm.c in '/,s , error No ='/,d\n"

,

argv[0] , errno)

;

pause (); /* WAIT OTHERWISE PIPES WILL CLOSE */
exit(O)

;

86

INITIAL DISTRIBUTION LIST

No. of Copies

1. Defense Technical Information Center 2

Cameron Station

Alexandria, Virginia 22304-6145

2. Library, Code 52 2

Naval Postgraduate School

Monterey, California 93943-5002

3. Department Chairman, Code EC 1

Department of Electrical and

Computer Engineering

Naval Postgraduate School

Monterey, California 93943-5000

4. Professor Shridhar B. Shukla, Code EC/Sh 2

Department of Electrical and

Computer Engineering

Naval Postgraduate School

Monterey, California 93943-5000

5. Professor Roberto Cristi, Code EC/Cx 1

Department of Electrical and

Computer Engineering

Naval Postgraduate School

Monterey, California 93943-5000

6. Professor Anthony Healey, Code ME/Hy 1

Mechanical Engineering Department

Naval Postgraduate School

Monterey, California 93943-5000

7. Professor Robert B. McGhee, Code CS/Mz 1

Computer Science Department

Naval Postgraduate School

Monterey, California 93943-5000

87

Embassy of Greece

Naval Attache

2228, Massachusetts Av., N.W.
Washington, D.C. 20008

LTJG Makris Dionysios

Tepeleniou 20,

Papagos

Athens, 15669

GREECE

88

1-0151 f
. ^Q A3y3JWOW

IOOH0S3iV-'iaVd9iSOdlWW
AavaanxoNXAaiana

